Abstract
BACKGROUND: Psychotic-like experiences (PLEs) are risk factors for the development of psychiatric conditions like schizophrenia, particularly if associated with distress. As PLEs have been related to alterations in both white matter and cognition, we investigated whether cognition (g-factor and processing speed) mediates the relationship between white matter and PLEs.</p>
METHODS: We investigated two independent samples (6170 and 19 891) from the UK Biobank, through path analysis. For both samples, measures of whole-brain fractional anisotropy (gFA) and mean diffusivity (gMD), as indications of white matter microstructure, were derived from probabilistic tractography. For the smaller sample, variables whole-brain white matter network efficiency and microstructure were also derived from structural connectome data.</p>
RESULTS: The mediation of cognition on the relationships between white matter properties and PLEs was non-significant. However, lower gFA was associated with having PLEs in combination with distress in the full available sample (standardized β = -0.053, p = 0.011). Additionally, lower gFA/higher gMD was associated with lower g-factor (standardized β = 0.049, p < 0.001; standardized β = -0.027, p = 0.003), and partially mediated by processing speed with a proportion mediated of 7% (p = < 0.001) for gFA and 11% (p < 0.001) for gMD.</p>
CONCLUSIONS: We show that lower global white matter microstructure is associated with having PLEs in combination with distress, which suggests a direction of future research that could help clarify how and why individuals progress from subclinical to clinical psychotic symptoms. Furthermore, we replicated that processing speed mediates the relationship between white matter microstructure and g-factor.</p>