Abstract
AIMS: To investigate the population attributable fraction due to elevated lipoprotein (a) (Lp(a)) and the utility of measuring Lp(a) in cardiovascular disease (CVD) risk prediction.</p>
METHODS AND RESULTS: In 413 734 participants from UK Biobank, associations of serum Lp(a) with composite fatal/non-fatal CVD (n = 10 066 events), fatal CVD (n = 3247), coronary heart disease (CHD; n = 18 292), peripheral vascular disease (PVD; n = 2716), and aortic stenosis (n = 901) were compared using Cox models. Median Lp(a) was 19.7 nmol/L (interquartile interval 7.6-75.3 nmol/L). About 20.8% had Lp(a) values >100 nmol/L; 9.2% had values >175 nmol/L. After adjustment for classical risk factors, 1 SD increment in log Lp(a) was associated with a hazard ratio for fatal/non-fatal CVD of 1.12 [95% confidence interval (CI) 1.10-1.15]. Similar associations were observed with fatal CVD, CHD, PVD, and aortic stenosis. Adding Lp(a) to a prediction model containing traditional CVD risk factors in a primary prevention group improved the C-index by +0.0017 (95% CI 0.0008-0.0026). In the whole cohort, Lp(a) above 100 nmol/L was associated with a population attributable fraction (PAF) of 5.8% (95% CI 4.9-6.7%), and for Lp(a) above 175 nmol/L the PAF was 3.0% (2.4-3.6%). Assuming causality and an achieved Lp(a) reduction of 80%, an ongoing trial to lower Lp(a) in patients with CVD and Lp(a) above 175 nmol/L may reduce CVD risk by 20.0% and CHD by 24.4%. Similar benefits were also modelled in the whole cohort, regardless of baseline CVD.</p>
CONCLUSION: Population screening for elevated Lp(a) may help to predict CVD and target Lp(a) lowering drugs, if such drugs prove efficacious, to those with markedly elevated levels.</p>