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0. Introduction
In this document we describe the phasing of 200,031 whole genome sequences

(WGS) of the UK Biobank using the SHAPEIT5 software (Hofmeister, Ribeiro,

Rubinacci, Delaneau, et al., 2022) (https://odelaneau.github.io/shapeit5/). This

dataset is developed for use by any researcher with access approval to the UKB.

Statistical haplotype phasing is a procedure applied to distinguish the two inherited

chromosome copies into haplotypes, as this information is not readily available

through sequencing, but can be accurately predicted in large cohorts by leveraging

identity-by-descent tracks. Phasing information unlocks several analyses, such as

detecting combinations of heterozygous variants present in both copies of a gene

(compound heterozygous events) and determining parent-of-origin effects

(Hofmeister, et al., 2022). Moreover, accurate phasing of reference panels shows to

improve genotype imputation (Hofmeister, Ribeiro, Rubinacci, Delaneau, et al., 2022;

Rubinacci et al., 2022). SHAPEIT5 was specifically developed to phase large whole

genome sequencing datasets, such as the UK biobank cohort. One of its main

features is its high accuracy in phasing rare variants, allowing users to increase the

pool of genetic variation in downstream analyses. broadening of the repertoire of

genetic variation accessible for downstream analyses, thereby enhancing the

potential for uncovering a wider range of genetic insights from the data.

In the following sections we describe the protocol used to phase chromosomes 1 to

22 and X on the set of 200,031 UKB genomes, leading to more than 684 million

phased variants (SNPs and indels). We describe the quality control measures

adopted prior to phasing, the phasing pipeline utilised, the validation and

performance assessment of the haplotypes. Additionally, we provide a description of

the imputation pipelines released to utilise the phased data as a haplotype reference

panel. These pipelines enable the imputation of SNP array (Rubinacci et al., 2020)

and low-coverage WGS (Rubinacci et al., 2021, 2022).

1. Dataset quality-control

The starting point is the interim WGS data release of the UK Biobank with

approximately 200k samples, pVCF files (Population level WGS variants, pVCF

https://paperpile.com/c/iQlr9H/WeLH
https://paperpile.com/c/iQlr9H/WeLH
https://odelaneau.github.io/shapeit5/
https://paperpile.com/c/iQlr9H/4r2C
https://paperpile.com/c/iQlr9H/Mdas+WeLH
https://paperpile.com/c/iQlr9H/WeLH
https://paperpile.com/c/iQlr9H/Mdas+WeLH
https://paperpile.com/c/iQlr9H/Mdas+WeLH
https://paperpile.com/c/iQlr9H/KgQV
https://paperpile.com/c/iQlr9H/Mdas+uTZC


format - interim 200k release, field 24304) (Halldorsson et al., 2022). These consist

of genotype calls from GraphTyper (Eggertsson et al., 2017) which include a

AAscore field per variant, based on a logistic regression model that predicts the

probability of being a true positive. This metric varies from 0 to 1, with values

towards 1 indicating high quality. As the accurate phasing is dependent on the

genotype call quality, we examined the quality of variants depending on the AAscore

in several orthogonal ways, with the aim of defining an optimal AAscore filter

threshold for the phasing procedure.

We started by exploring the AAscores of all 22,027,524 variants (SNPs and indels)

present on chr17 across the 200k samples (before any filter). We observed that most

variants have high AAscores (mean AAscore = 0.915, median = 0.968). We then

used a baseline filter of AAscore >= 0.5, as used by the data producers (Halldorsson

et al., 2022) and Hardy-Weinberg equilibrium (HWE) p-value < 1e-30 (calculated only

on Caucasian individuals), which excluded 2,172,344 variants (9.86% of the

variants). Of the remaining 19,855,180 variants, 18,088,253 were SNPs and

1,766,927 were indels, presenting markedly different distributions of AAscores

(Figure 1, mean AAscore for SNPs = 0.950, for indels = 0.854). An AAscore

threshold of >=0.8 excludes 10.9% of all variants, whereas a threshold of >0.95

excludes up to 37.1% of all variants.

1.1 AAscore and mappability (D. Ribeiro)

We observed that AAscores are largely correlated with read mappability, when

visually comparing mean AAscores across 10kb bins and mappability tracks from

Single-read and multi-read mappability after bisulfite conversion (Bismap, k24,

GRCh38) (Karimzadeh et al., 2018). Lower AAscore stretches clearly matched drops

in mappability across all chromosomes (Figure 2a). These often occur in and around
centromeres, or in the short arms of acrocentric chromosomes. Of note, drops in

AAscore are largely reduced when filtering for AAscore > 0.8 across chromosomes

(Figure 2b, Supplementary Figure 1).

https://paperpile.com/c/iQlr9H/AhkM
https://paperpile.com/c/iQlr9H/oVzy
https://paperpile.com/c/iQlr9H/AhkM
https://paperpile.com/c/iQlr9H/AhkM
https://paperpile.com/c/iQlr9H/7Bbg


Figure 1. Distribution of variant AAscores. (a) for SNPs (N = 18,088,253), (b) for indels
(N = 1,766,927). Only variants with AAscore > 0.5 filter were considered.

Figure 2. Mappability and mean AAscore per 10kb bins in chromosome 1. (a) before
AAscore and HWE filters, (b) after AAscore > 0.8 and HWE filters. Mappability based on

Bismap k24 shown in grey. AAscore shown in black (low variant density in 10kb bin) and

blue (high variant density). Red rectangles show the chunks for SHAPEIT5 phase_common

step, and blue rectangles the chunks for phase_rare, along with the total number of variants

in the chunk (in thousands).



1.2 AAscore and Mendel error rates (D. Ribeiro)

To evaluate genotype calls and the AAscore metric, we measured the number of

Mendel inconsistencies (disagreement between genotype and pedigree data) in

genotype calls between 93 trios (mother-father-child) present in the UK Biobank

200k WGS dataset. We focused on 201,283 common variants (159,018 SNPs,

42,265 indels) with minor allele frequency (MAF) > 5% in chromosome 17. By

counting the number of genotype inconsistencies (e.g. child presenting an allele not

present in the parents), we observed that variants with low AAscores (e.g. 0.5 to 0.6,

~1.5% error rate), had approximately 6-fold higher error rates than variants with high

AAscores (e.g. 0.8 to 0.9, 0.25% error rate, Figure 3). Variants with very high

AAscores (>0.95) show error rates below 0.1%. Mendel inconsistency was estimated

with an in-house tool (otools_2023-03-09_006c7e1) on BCF files filtered by AAscore

> 0.5 and HWE p-value < 1e-30 (calculated only on Caucasian individuals).

Figure 3. Mendel inconsistency errors in UKB trios depending on AAscore. (a) in
159,036 chr17 SNPs, (b) in 42,265 chr17 indels. Mendel Error percentage is calculated as

the sum of inconsistencies divided by the number of variants/trios with alternative alleles.

https://github.com/odelaneau/otools


1.3 AAscore and SNP array concordance (D. Ribeiro)

A key question when filtering variants is how many commonly assessed SNP array

variants are being filtered out. We thus evaluated the overlap between the 200k

WGS variants with the UK Biobank Axiom SNP array (field 22418, liftover to b38),

depending on the AAscore filter. Overall, out of 22,669 SNP array variants in chr17,

22,615 (99.8%) are present in the WGS dataset, prior to any filtering (matching by

chromosome, position, reference and alternative alleles). When filtering for variants

with AAscore >=0.8, the vast majority of SNP array variants (22,317, 99.5%) are

kept. We then compared the non-discordance rate (NRD, using bcftools stats -S)

between WGS and SNP array genotypes (Table 1). As expected, we observed a

higher NRD for variants with low AAscore (e.g. 2.09 for AAscore >=0.6 and <0.7),

whereas NRD show to be several times lower in variants with high AAscore (e.g.

0.51 for AAscore >=0.9 and <0.95).

AAscore bin # variants NRD R/R
Discord

R/A
Discord

A/A
Discord

>=0.5 & <0.6 7 7.54 2.97 0.45 0.30

>=0.6 & <0.7 19 2.09 0.55 1.71 0.38

>=0.7 & <0.8 68 1.35 0.04 1.21 0.08

>=0.8 & <0.9 186 3.22 1.90 1.28 0.17

>=0.9 & <0.95 419 0.51 0.09 0.33 0.23

>=0.95 21498 0.27 0.06 0.10 0.11

Table 1. Discordance rates between WGS and SNP array genotypes in chr17,
depending on AAscore bin. Non-reference (NRD), reference-reference (R/R),
reference-alternative (R/R) and alternative-alternative (A/A) are shown.

1.4 AAscore and gnomAD variant overlap (D. Ribeiro)

Similarly to SNP arrays, we compared the overlap between the UKB 200k WGS

variants and gnomAD database (Chen et al., 2022). For this, we gathered chr17 data

from gnomAD v3.1.2 (WGS sites in 76,156 samples), retaining only 230,864

common sites in non-Finnish European samples (sites with MAF_nfe>0.05, and

https://paperpile.com/c/iQlr9H/h7Be


AC_nfe>1000, with ‘PASS’ flag). We compared the overlap between these 230,864

gnomAD sites and the 201,283 chr17 UKB common sites (MAF 5%, no sample

filter). Overall, 90.5% of the UKB variants with AAscore >=0.5 are present in

gnomAD. This proportion increases to 93.3% and 95.3% of variants when

considering AAscore >=0.8 and >=0.95, respectively. The likelihood of a variant

being present in gnomAD increases with the AAscore (Figure 4), but remains
relatively low for indels (<75%), possibly due to differences in indel calling between

the softwares used.

Figure 4. Percentage of UKB WGS chr17 common sites in gnomAD depending on
AAscore. (a) in 159,018 chr17 SNPs, (b) in 42,265 chr17 indels.

We then compared the presence of gnomAD SNPs in the UKB WGS dataset. When

focusing on a subset of 115,213 common SNPs (i.e. no indels) in gnomAD (AC_nfe

> 10000, MAF_nfe>0.1), the UKB WGS dataset contains 99.7% of these sites before

any filtering. When applying AAscore filtering of >=0.5 (and no other filtering) this is

reduced to 97.9% and to 93.3% with AAscore >=0.8 (Table 2). The reason for this

decrease may be due to different strigency in filter: the AAscore filtering in UKB may

be more stringent than the “PASS” filtering of gnomAD, even for common variants.

1.5 AAscore and chrX heterozygous rate (D. Ribeiro)

As the chromosome X in males should be haploid (except in the PAR1

chrX:10,001-2,781,479 and PAR2 chrX:155,701,383-156,030,895 regions), and

diploid in females, we evaluated heterozygous rates depending on AAscore. We

expected that erroneous genotype calls inflate the number of heterozygous

genotypes in males (males defined with UKB Field 22001). Focusing on 183,205



chrX common SNPs (MAF 5%, no indels, excluding PAR regions), for each individual

we calculated the number of heterozygous genotypes by the total number of

genotypes (with bcftools stats -s -). We calculated this heterozygous rate for different

sets of SNPs depending on AAscore (Table 3). Reassuringly, high AAscores have

very low heterozygous rates in males (0.05% for AAscore >=0.95). However,

heterozygous rates in males varied per AAscore bin, with as much as 4.17%

genotypes being heterozygous in SNPs with AAscore between 0.5 and 0.6. As a

control, we measured heterozygous rates in females, which show an opposite trend,

with increasing heterozygosity with higher AAscore (from 10.1% to 28.7%).

AAscore filter % gnomAD SNPs in UKB WGS

No filter 99.7% (N = 114885)

>=0.5 97.8% (N = 112640)

>=0.8 93.2% (N = 107400)

>=0.95 83.4% (N = 96117)

Table 2. presence of gnomAD common SNPs in the UKB WGS dataset, depending on
AAscore filter. 115,213 gnomAD variants with MAF > 10% were used for this analysis.

AAscore bin # SNPs Male
heterozygous rate

Female
heterozygous rate

<0.5 19527 7.57% 10.08%

>=0.5 & <0.6 3052 4.17% 12.07%

>=0.6 & <0.7 3599 2.39% 13.74%

>=0.7 & <0.8 5631 1.41% 16.60%

>=0.8 & <0.9 9601 0.86% 19.79%

>=0.9 & <0.95 12909 0.38% 24.36%

>=0.95 148413 0.05% 28.65%

Table 3. Male and female heterozygous rate on chrX common SNPs depending on
AAscore. Heterozygous rate is calculated per individual as the number of heterozygous

genotypes among all genotypes for a certain set of variants (depending on AAscore).



We next compared the mean number of heterozygous genotypes (in chrX non-PAR

regions) between males and females for SNPs with AAscore >=0.95 (Figure 5). We

find a clear discrepancy, with an average 0.05% of heterozygous rate in males,

compared to 28.7% in females. This metric allowed us to pinpoint samples that may

have misassigned genetic sex or aneuploidies in the dataset (e.g. 898 males with

heterozygous rates > 0.11%, 1101 females with heterozygous rates < 0.5%). This

aided our decision to include only the 99% most chrX heterozygous females for the

calculation of HWE p-values in chrX sites. In addition, when phasing chrX, we

considered the 99% least chrX heterozygous male individuals as being haploid, as

explained in below.

Figure 5. Heterozygous rates in males and females. Calculated on 148,413 SNPs with
AAscore > 0.95. Females N = 110,024, Males N = 89,839.

1.6 AAscore and imputation accuracy (R. Hofmeister)

We next evaluated the impact of AAscore filtering on imputation accuracy, as

imputation is a common application of phased reference panels. For this, we

performed phasing and imputation experiments across three AAscore cutoffs (0.5,

0.8 and 0.95) on chr17 SNP array data from 995 British unrelated individuals using

IMPUTE5 v1.1.5 (Rubinacci et al., 2020) (see section 3.2). We found that

https://paperpile.com/c/iQlr9H/KgQV


considering variants with lower AAscores results in a slightly decreased imputation

accuracy (Figure 6). Since the phasing procedure considers all variants in a chunk,

a key question is whether including variants with low AAscores impacts the phasing

of variants with higher AAscore, and thus their imputation accuracy. To assess this,

we performed phasing with different AAscore cutoffs, as before, but measured

imputation accuracy only for variants with AAscore > 0.95. We found that considering

variants with lower AAscores does not affect imputation accuracy of sites with

AAscore > 0.95 (Figure 7). As a result, the phased dataset can be filtered for

AAscore a posteriori.

Figure 6. Imputation accuracy depending on AAscore. Imputation accuracy (r-squared, y axis)

stratified by Minor Allele Count (MAC) bins (x axis) for chr17 split in 4 chunks. A panel per phasing

chunk, each line representing a different AAscore filter (0.5, 0.8 and 0.95).

Figure 7. Imputation accuracy and AAscore filters using sites with AAscore >=0.95. Imputation
accuracy (r-squared, y axis) stratified by Minor Allele Count (MAC) bins (x axis) for chr17 split in 4



chunks. A panel per phasing chunk, each line represents a different AAscore filter. In this figure, we

filtered the phased data after the phasing procedure to keep only variant sites with AAscore>=0.95.

1.7 Data processing and filtering (R. Hofmeister, S. Rubinacci, D. Ribeiro)

Below we describe the filtering settings used for selecting which variants to phase.

Overall, we retained more than 684 million SNPs and indels for phasing (Table 4),
~90% of the variants per chromosome. Most of the approximately 10% variants

excluded were filtered out by AAscore, with a smaller amount excluded due to

Hardy-Weinberg disequilibrium or other filters. The number of samples used are

described in Table 5.
● AAscore: Through the above orthogonal evaluation of AAscores (mappability,

Mendel inconsistencies, overlap with SNP array and gnomAD datasets, chrX

heterozygous rates and imputation accuracy), we can conclude that AAscore

is well calibrated with variant quality. We considered that a AAscore threshold

of 0.5 is too lenient and may comprise our phasing procedure. While variant

quality is highest with stringent thresholds (e.g. >=0.95), this threshold

excludes 37.1% of all variants, which limits downstream analysis. Given this,

we decided on a AAscore threshold of >=0.8, as a compromise between

variant site quality (low error rates on most metrics) and number of sites

excluded (7.85% of all variants).

● Hardy-Weinberg equilibrium (HWE): We excluded variants with HWE p-value

<1e-30, calculated on 113,637 unrelated Caucasian samples. For chrX, we

calculated HWE only on the 99% (N=61,387) female unrelated Caucasian

samples with the highest heterozygous rates (see section 1.5 for details).

● Other filters: Besides the previous filters, we also excluded variants with

genotype missingness above 10% (F_MISSING > 0.1, using bcftools), i.e.

>10% individuals with missing data for that variant. In addition, we excluded

variants without a “PASS” in the VCF FILTER field and excluded variants

where the alternative allele was missing (i.e. set as “*”). Of note, a higher

proportion of variants are excluded with the “PASS” filter on chrX compared to

autosomes. In addition, chrX PAR1 and PAR2 regions were not phased, which

partially explains the higher rate of unphased variants in chrX.



● Conversion from multi-allelic to bi-allelic: To deal with multi-allelic sites in the

input files, we converted multi-allelic to bi-allelic sites using the bcftools norm

function (with -m -any parameters). This was executed before all above filters.

This ensures compatibility of the data with all tools commonly used in the

field.

chr Phased SNPs
Phased
indels

Unphased
SNPs

Unphased
indels

Unphased %
Unphased
Filtered by
AAscore %

Unphased
Filtered by
HWE %

1 49,028,590 3,508,622 3,624,714 1,938,101 10.59% 92.21% 5.18%

2 54,348,858 3,839,699 3,062,538 1,969,373 8.65% 91.05% 4.14%

3 45,302,488 3,220,355 2,042,704 1,565,866 7.44% 89.34% 5.33%

4 43,546,711 3,139,277 2,164,061 1,482,616 7.81% 88.80% 5.62%

5 40,657,162 2,885,161 2,010,525 1,412,059 7.86% 90.60% 4.92%

6 38,165,066 2,802,268 1,661,946 1,374,375 7.41% 89.24% 5.36%

7 35,671,487 2,541,459 2,346,964 1,382,369 9.76% 91.63% 5.11%

8 35,062,502 2,342,549 1,922,519 1,141,357 8.19% 88.48% 5.34%

9 27,058,701 1,833,852 2,826,239 1,042,437 13.39% 92.85% 5.18%

10 29,898,454 2,104,663 1,790,582 1,128,444 9.12% 90.99% 5.25%

11 30,622,290 2,119,160 1,566,212 1,068,945 8.05% 89.84% 5.70%

12 29,414,835 2,156,598 1,505,020 1,131,797 8.35% 90.03% 5.95%

13 21,733,330 1,621,803 994,358 779,048 7.59% 89.18% 5.66%

14 19,846,065 1,446,113 1,242,319 757,879 9.39% 90.78% 4.20%

15 18,075,979 1,290,116 1,566,423 745,600 11.94% 92.77% 6.14%

16 20,178,833 1,263,556 1,864,945 782,296 12.35% 92.21% 4.04%

17 17,372,974 1,286,557 1,361,870 814,046 11.66% 90.76% 6.01%

18 17,047,126 1,237,219 984,130 610,784 8.72% 91.28% 8.16%

19 13,101,931 981,149 1,035,254 662,906 12.06% 90.78% 4.70%

20 14,075,021 972,197 869,612 539,884 9.37% 91.12% 7.59%

21 7,885,781 578,110 1,044,333 344,096 16.40% 92.56% 6.24%

22 8,055,945 566,895 1,243,662 392,371 18.97% 93.02% 6.23%

X 23,248,080 1,551,508 4,040,602 1,131,225 20.85% 55.27% 2.54%

Total 639,398,209 45,288,886 42,771,532 24,197,874 9.78% 88.11% 5.14%

Table 4. Summary of phased and unphased variants per chromosome. The percentage
of unphased variants filtered by AAscore 0.8 and HWE are reported as a percentage of the

total of unphased variants (SNPs and indels). Note that a variant can be excluded by several

filters (e.g. a variant excluded by HWE and AAscore, PASS filter or F_MISSING filters).



Dataset Female Male Total Total
Caucasian Total Other

All
samples 110,024 89,839 200,031 167,117 32,914

Unrelated 63,762 76,245 140,175 113,637 26,538
Duos 542 373 915 789 126
Trios 59 34 93 85 8

Table 5. Summary of samples used from the UKB 200K WGS release. Note that 168

samples have no genetic sex attributed.

2. Phasing procedure

We phased all the sequencing data in 4 steps as follows using SHAPEIT5. A full

documentation of SHAPEIT5 can be found here.

1. We first phased the common variants (MAF >= 0.1%) using the phase_common
program. For the UK Biobank WGS data, it is recommended to split the chromosome

into large chunks (e.g. 20 cM) to ensure good accuracy while speeding up the

computations.

2. We ligated the phased chunks at common variants (MAF >= 0.1%) of a chromosome

using the ligate program. The ligation step is computationally efficient and uses

variants in the intersection of the chunks to provide chromosome-wide haplotypes.

The result of this step is used as a haplotype scaffold for the next step.

3. We phased rare variants (MAF < 0.1%) using the phase_rare program. To do this,

we use the haplotype scaffold generated in step 2 and we proceed in relatively small

chunks (e.g. 5Mb) to run many small jobs in parallel. At the end of this step, we have

several phased chunks.

4. We concatenated all the phased chunks generated in step 3 using bcftools concat -n.

As in the previous step haplotypes have been phased onto a haplotype scaffold,

there is no need to ligate the chunks, and the files can be directly concatenated

without decompression and recompression. This makes this step almost

instantaneous, even for large cohorts.

For the phasing of the UK Biobank WGS 200k, we used SHAPEIT v5.1.0. Details of the

parameters and the command lines we run can be found here (LINK). We utilized

parent-offspring information to inform the phasing of common and rare variants when

https://odelaneau.github.io/shapeit5/
https://odelaneau.github.io/shapeit5/docs/documentation/phase_common/
https://odelaneau.github.io/shapeit5/docs/documentation/ligate/
https://odelaneau.github.io/shapeit5/docs/documentation/phase_rare/
https://github.com/odelaneau/shapeit5/releases/tag/v5.1.0
https://odelaneau.github.io/shapeit5/docs/tutorials/ukb_wgs/


possible (#trios=93 and #duos=915) using the SHAPEIT5 option --pedigree (see 2.2.5). This

ensures that the first and second offspring haplotypes come from parent 1 and 2,

respectively. We also enforced haploidy for male on chromosome X using the SHAPEIT5

option --haploid (see 2.2.6).

2.1 Chunking (S. Rubinacci)

To phase the UK Biobank WGS 200k, we used (i) large chunks (~20 cM) to phase

common variants (step 1) and (ii) small chunks (~4Mb) to phase rare variants (step

3). To produce the small chunks for the step 3 (phasing rare variants), we use the

GLIMPSE2_chunk tool as follows:

GLIMPSE2_chunk --input ${bcf_input}
--output sites.txt
--window-cm 4
--window-mb 4
--window-count 30000
--buffer-cm 0.5
--buffer-mb 0.5
--buffer-count 3000
--sequential
--map chr${CHR}.b38.gmap.gz
--region chr${CHR}

This command ensures that the chunks are at least 4cM long and 5Mb long (when

including the buffer region) and includes at least 30,000 common variants (MAF

>0.1%). These criteria ensure that chunks overlapping centromeres contain enough

variants to retain a good phasing and imputation accuracy. To produce the large

chunks for the step 1 (phasing common variants), we manually merged the small

chunks produced with the above command four by four. Chunks used for the UK

Biobank WGS 200k phasing are available here. These can be used for any other

analysis requiring chunking on the GRCh38 assembly.

2.2 Phasing (R. Hofmeister)

2.2.1 Phasing common variants

To phase common variants we used a total of 145 chunks of on average 25 cM. We

ran each phasing chunk as a single job on a mem1_ssd1_v2_x72 instance. On

average, each job took 6.5 hours and cost £4 on spot. A relatively small number of

https://github.com/odelaneau/GLIMPSE
https://github.com/odelaneau/shapeit5/tree/main/resources/chunks/b38/UKB_WGS_200k


jobs (n=4) ran on-demand and cost on average £16. The total cost for this step was

about £630.

2.2.2 Ligate common variants

To ligate phased chunks from the previous step, we used the SHAPEIT5 ligate tool.

We ran one job per chromosome on the mem1_ssd1_v2_x8 instance. Jobs cost

between £0.017 and £0.1 and lasted between 20 and 104 minutes (for chromosome

22 and chromosome 1, respectively).

2.2.3 Phasing rare variants

To phase rare variants on the autosomes, we used a total of 558 chunks of on

average 6.5 cM. To optimise the running time and cost of this process, we grouped

those chunks into 70 sets of 8 chunks and ran each set on the mem3_ssd1_v2_x32

instance with 4 jobs in parallel using 8 threads each (with xargs -P 4). This allowed

us to have the 70 jobs running in parallel on the UK Biobank RAP. Each of the 70

jobs took on average less than 9 hours and cost less than £2 when running on spot.

(11 ran on-demand <£14 and <11 hours). The total cost for this step was about £272.

For each rare heterozygous genotype, we reported the phasing confidence as the

probability that the minor allele sits on the haplotypes reported in the FORMAT/GT

field. This probability is given in the FORMAT/PP field and ranges from 0.5 (full

uncertainty) to 1.0 (best phasing quality). Note that singletons were systematically

given a score of 0.5.

2.2.4 Concatenating

We finally concatenated all phased chunks to obtain chromosome-wide phased files.

For this, we used the bcftools concat -n command. We ran one job per chromosome

on the mem1_ssd1_v2_x16 machine. Jobs cost between £0.078 and £0.48 and

lasted between 45 and 277 minutes (for chromosome 22 and chromosome 1,

respectively).

2.2.5 Family phasing

When available, we leveraged knowledge of family relationships (parent-offspring

relationships, duos/trios) to improve phasing accuracy. In addition, this also allows us

to perform inter-chromosomal phasing, meaning that the first and second haplotypes



correspond to the same parents across the 22 autosomes (in our case, the first

haplotype is the paternal one and the second haplotype is the maternal one). To

perform this family phasing, we used the --pedigree option in SHAPEIT5. This takes

as input a pedigree file that contains one line per sample having parent(s) in the

dataset and three columns (offspringID fatherID and motherID), separated by TABs.

Use NAs is allowed for unknown parents (in the case of duos). Family data is used to

fix the phase of offspring heterozygous genotypes when possible, that is when (i)

there is no Mendel inconsistency, and (ii) at least one parent is homozygous. In other

words, it builds a scaffold of haplotypes for offspring from the parental genomes.

2.2.6 Chromosome X phasing

For chromosome X phasing we first remove the PAR regions. We used the option

--haploid to specify the list of male individuals to consider as haploid. We first

identified putative males as genetically determined (UK Biobank field 22001). We

additionally excluded individuals having sex chromosome aneuploidy (UK BIobank

field 22019). Finally, we excluded from the list 898 males with heterozygosity >

0.109% (see section 1.5). As a result, we obtain a list of 88,877 males that we used

as input for the --haploid option. Individuals that are not on the list are phased as

diploids, in the same way as autosomes.

3. Phasing validation

To assess the accuracy of our phased haplotypes, we used different strategies. The

first one leverages available family information. The second one is agnostic of family

and leverages the fact that an accurate imputation relies on an accurately phased

reference panel.

3.1 Phasing validation using family information (R. Hofmeister)

A standard approach is to leverage parent-offspring trios and duos in the data to

measure the switch error rate (SER) in the offspring (phased without pedigree

information). The SER measures how close estimated and true haplotypes are and

The SER is defined as the fraction of successive pairs of heterozygous genotypes

being correctly phased.

https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=22001
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=22019
https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=22019


Figure 8. Phasing Switch Error Rates (SER). Phasing switch error rate (y-axis) stratified
by MAC (x-axis) across the 22 autosomes. Computed using 93 trios and 915 duos.

In the context of this work, offspring have been phased together with their parents,

so that many of their heterozygous genotypes are phased using mendel logic. We

can therefore not use the approach described before. Instead, we looked at the

switch error rates in the parents, under the assumption of no-recombination (which is

true in most of the cases). This does not provide an unbiased estimate of the SER

but instead a validation of the statistical phasing we performed. We should expect

indeed extremely low switch errors if the statistical model is able to phase the

parents conditioning on the offsprings haplotypes. We therefore measured SER

stratified by bins of minor allele count (MAC). We assigned each heterozygous

genotype to a given MAC bin and counted the fraction of heterozygous genotypes

being correctly phased per MAC bin. This definition of SER has the advantage of

showing how well statistical phasing performs depending on the frequency of the

variants it phases (either common or rare). On average across the 22 autosomes in



93 trios and 915 duos, the phasing switch error rate (SER) is below 0.01% (Figure
8; Supplementary Figure 2). Notably, the highest SER are found in acrocentric

chromosomes (e.g. chr15 and chr21), for which the phasing of the short arm is more

challenging. The computation of SER was performed with the SHAPEIT5 switch
program.

3.2 Phasing validation by imputation (R. Hofmeister, S. Rubinacci)

As genotype imputation accuracy directly improves with appropriate reference panel

phasing, we evaluated imputation performance across autosomes, chrX and several

difficult genomic regions.

3.2.1 Autosome-wide

It is well established that genotype imputation performs better with an accurate

phasing of the reference panel. We therefore leverage this feature to assess the

accuracy of our phasing through genotype imputation. For this, we randomly

selected 1,000 individuals of white British ancestry that are unrelated to any other

UK Biobank participant. We built a reference panel for genotype imputation by

removing these individuals from our haplotype callsets. We then used the available

UK Biobank Axiom array data as input for genotype imputation, from which we

imputed only our selected 1,000 individuals using IMPUTE5 v1.1.5 (Rubinacci et al.,

2020). We ran the imputation in chunks of ~25cM (i.e, we used the same chunking

as for the phasing of common variants; see section 2.1). Finally, we computed the

phasing accuracy using the concordance tool of GLIMPSE v2.0.0 (Rubinacci et al.,

2022). This imputation accuracy (aggregate r2) is represented chromosome-wide and

stratified by Minor Allele Count (MAC) in Figure 9. We observed that imputation

accuracy increases with MAC as expected and is highly consistent across

chromosomes.

https://odelaneau.github.io/shapeit5/docs/documentation/switch/
https://paperpile.com/c/iQlr9H/KgQV
https://paperpile.com/c/iQlr9H/KgQV
https://paperpile.com/c/iQlr9H/Mdas
https://paperpile.com/c/iQlr9H/Mdas


Figure 9. Imputation accuracy. Imputation accuracy (r2, y-axis) stratified by MAC (x-axis) across the

22 autosomes. Each black line represents an autosome.

3.2.2 Region specific

We next assessed the accuracy of imputation per chunk, both for the large and the

small chunks used to phase common and rare variants, respectively (see section

2.1). We observed that some chunks have lower imputation accuracy than others

(Supplementary Figure 3). To investigate further, we modified the chunking to

highlight the centromeric regions, as well as the regions before and after the

centromere (Supplementary Figure 4). We found that drops in imputation accuracy

occur for the first chunks of acrocentric chromosomes (e.g, chromosomes 21 and

22) as well as for chunks overlapping large centromeres (e.g, chromosome 9,



Supplementary figure 3). These chunks usually contain only a few variants and do

not really impact the overall accuracy across the chromosome, as seen in Figure 9.

3.2.3 Chromosome X

We finally assessed imputation accuracy on chromosome X, which used a specific

phasing parameter to account for variable ploidy. However, we observed a genotype

imputation accuracy on chromosome X similar to that of autosomes (Figure 10).

Figure 10. Imputation accuracy on chromosome X. Imputation accuracy (r2, y-axis) stratified by
Minor Allele Count (x-axis) across the small chunks of ~6cM on chromosome X. Each black line

represents a chunk.



4. Data availability (D. Ribeiro)

We provided phased pVCF files for 200,011 individuals and about 684 million SNPs

and indels, one file per chromosome (1-22 and X), together with index files. We have

simplified the INFO field and only provide a phased GT field as well as the phasing

probability (PP) of each genotype. We excluded 20 samples that withdrew from the

UK Biobank study at the time the phasing data was returned to the UK Biobank

(samples were excluded after filtering and phasing procedures). Besides this, we

provide indexed BCF and TSV files comprising all input WGS variants and their

original INFO field (from GraphType), with an added PHASED tag, representing

whether this variant has been phased or not (which is dependent on our

quality-control).

5. Released pipelines (S. Rubinacci)

5.1 Introduction

Genotype imputation is a computational technique used to estimate missing

genotypes in SNP array data. It involves using a reference panel of haplotypes to

predict the missing genotypes. This process can also be applied to low-coverage

whole genome sequencing data, where it helps to fill-in missing genotypes or

improve uncertain genotype calls obtained from sequencing reads.

We have developed pipelines that employ the UK Biobank reference panel to

perform genotype imputation for both SNP array and low-coverage whole genome

sequencing data. To accomplish this, we utilise efficient state-of-the-art tools such as

IMPUTE5 (Rubinacci et al., 2020) for SNP array imputation and GLIMPSE2

(Rubinacci et al., 2021, 2022) for low-coverage WGS imputation. Our pipeline takes

input from either a multi-sample VCF/BCF file containing genotypes from SNP arrays

or a set of low-coverage BAM/CRAM files. Using the UK Biobank reference panel

generated as described in the previous sections, the pipeline performs imputation by

running applets and dx command jobs, specifically designed for the UKB RAP.

At the end of each of the imputation pipelines, a single multi-sample BCF file per

chromosome is produced, containing genotype posteriors, dosages and phased

https://paperpile.com/c/iQlr9H/KgQV
https://paperpile.com/c/iQlr9H/uTZC+Mdas


best-guess genotypes. Additional output (e.g. haploid dosages) can be obtained by

specifying additional options to the imputation software using the appropriate option.

5.2 Low-coverage WGS imputation pipeline

The inputs of the low-coverage imputation pipeline are described in Supplementary
Table 1. The workflow begins with a set of BAM/CRAM files low-coverage WGS

reads uploaded on the UKB RAP. The pipeline's default parameters are optimised for

cost-efficiency with few hundreds samples, but adjustments are necessary for larger

sample sizes (e.g., using larger computing instances). It is recommended to run at

least 100 samples in a single batch.

The low-coverage WGS imputation pipeline consists of two modules:

● Convert reference: this module is the first step when setting up the pipeline

and it is run only once. Its purpose is to convert the phased pVCF files from

the RAP into the binary representation of GLIMPSE2 using

GLIMPSE_split_reference.

● Imputation: This module is responsible for performing genotype imputation

using GLIMPSE2. It is the most computationally intensive task in the pipeline,

taking in input the binary reference panel files and a set of BAM/CRAM files.

At the end of the imputation step, a single ligation step is performed to provide

chromosome-level phased genotypes.

5.3 SNP array imputation pipeline

The SNP array imputation pipeline requires specific inputs, which are described in

Supplementary Table 2. The workflow begins with a multi-sample VCF/BCF file

containing chromosome-wide SNP array data, which can be phased or unphased. It

is important that the samples in the file are genotyped using the same SNP array

and have a broad European origin matching the UK Biobank reference panel. The

pipeline's default parameters are optimised for cost-efficiency with a few hundred

samples, but adjustments are necessary for larger sample sizes (e.g., using larger

computing instances). It is recommended to run at least 100 samples in a single

batch.



The pipeline utilizes IMPUTE5, a licensed software owned by the University of

Oxford. Its usage is permissible for academic purposes in accordance with the

software's license.

The SNP array imputation pipeline consists of four modules that perform subsequent

tasks. Here is a short description of each module:

● Convert reference: this module is the first step when setting up the pipeline

and it is run only once. Its purpose is to convert the phased pVCF files from

the RAP into the XCF sparse format used by SHAPEIT5 and IMPUTE5.

● Prephasing: this module is used for prephasing the data using SHAPEIT5

phase_common. It is necessary when working with unphased SNP array data.

The output of this module is a phased target file in the XCF binary format.

● Convert target: this module is employed when the SNP array data has

already been phased and uploaded to the RAP. In such cases, this module

performs the conversion to the XCF binary format.

● Imputation: This module is responsible for performing genotype imputation

using IMPUTE5 v1.2.0. It is the most computationally intensive task in the

pipeline, taking in input XCF files for the reference and target panels. At the

end of the imputation step, a single ligation step is performed to provide

chromosome-level phased genotypes.

5.4 Software

The SNP array and low-coverage pipelines utilise the following software tools:

● XCFTOOLS v1.0.0 [LINK]: Used in the SNP array pipeline.

● SHAPEIT v5.1.0 [LINK]: Used in the SNP array pipeline.

● GLIMPSE v2.0.0 [LINK]: Used in the low-coverage pipeline.

● IMPUTE5 v1.2.0 [LINK]: Used in the SNP array pipeline. IMPUTE5 is a

licensed software owned by the University of Oxford. Its usage is permissible

for academic purposes in accordance with the software's licence.

5.5 Price estimates

Table 5 provides price estimates for spot instances. It is well-documented in the

literature that SNP array imputation is more efficient compared to low-coverage

https://github.com/odelaneau/xcftools
https://github.com/odelaneau/shapeit5/releases/tag/v5.1.0
https://github.com/odelaneau/GLIMPSE/releases/tag/v2.0.0
https://www.dropbox.com/sh/mwnceyhir8yze2j/AADbzP6QuAFPrj0Z9_I1RSmla?dl=0


WGS imputation. However, utilising our GLIMPSE2-based pipeline, we are able to

impute a sample from the 200k reference panel for approximately 0.08 £ per sample.

For SNP array imputation, leveraging the latest updates from IMPUTE5 (v.1.2.0) with

the XCF file format, the cost is reported to be less than 0.001 £ per sample for

batches larger than 500 samples.

It is important to consider that additional factors can influence the running time. In

the case of low-coverage WGS, higher coverage levels result in longer running times

and increased storage requirements. Similarly, with SNP array data, denser SNP

arrays lead to higher memory usage and longer running times. The costs presented

in Table 5 should therefore be regarded as guidelines based on an average case

scenario.

Number of
target samples

Low-coverage pipeline.
Estimated cost per sample
(whole genome - 1.0x coverage)

SNP array pipeline.
Estimated cost per sample
(whole genome - Axiom array)

1 0.92 £ 0.21 £

10 0.152 £ 0.019 £

50 0.091 £ 0.0049 £

100 0.082 £ 0.00265 £

500 0.079 £ 0.00096 £

1000 0.077 £ 0.00084 £

Table 5. Price estimates of the pipelines on the UK Biobank RAP (spot instances).

6. Code availability

We processed the data, performed haplotype phasing and validation using the

following software:

- SHAPEIT v5.1.0 [LINK]

- BCFtools v1.15.1 [LINK]

- GLIMPSE v2.0.0 [LINK]

https://github.com/odelaneau/shapeit5/releases/tag/v5.1.0
https://samtools.github.io/bcftools/bcftools.html
https://github.com/odelaneau/GLIMPSE/releases/tag/v2.0.0


The pipelines to perform genotype imputation are released under MIT licence.

However, please note that the programs used may be subject to different licences.

The pipelines are available at https://github.com/srubinacci/imputation-ukb-ref-panel.

7. Funding and Data Access

The UK Biobank data was obtained via approved application number 66995. All

processing and analyses were carried out in the UKB Research Analysis Platform

(RAP). All this work has been funded by the Swiss National Science Foundation

project grant PP00P3_176977.

https://github.com/srubinacci/imputation-ukb-ref-panel


8. Supplementary figures







Supplementary Figure 1. Mappability and mean AAscore per 10kb bins across chromosomes.
A plot is shown for each chromosome. Values after AAscore > 0.8 and HWE filters. Mappability based

on Bismap k24 shown in grey. AAscore shown in black (low variant density in 10kb bin) and blue (high

variant density). Red rectangles show the chunks for SHAPEIT5 phase_common step, and blue

rectangles the chunks for phase_rare, along with the total number of variants in the chunk (in

thousands).



Supplementary Figure 2. Phasing Switch Error Rates (SER). Phasing switch error rate (y-axis)

stratified by duo and trio offspring (x-axis) across the 22 autosomes. Each bar represents an

individual with non-zero SER. Black bars for duos; Red bars for trios.













Supplementary Figure 3. Imputation accuracy by chromosome chunks. Imputation accuracy (r2,
y-axis) stratified by Minor Allele Count (x-axis) across the 22 autosomes. Each row represents an

autosome. Left panels: accuracy aggregated by chunks of ~25cM (“phase common” chunks). Middle

panel: accuracy aggregated by chunks of ~6cM (“phase rare” chunks). Right panels: accuracy

aggregated by chunks of ~6cM with modified chunking highlighting centromere regions (see

Supplementary Figure 4).

Supplementary Figure 4. Schematic representation of the modified chunking in centromere
regions. For each chromosome, the two chunks overlapping the centromere are modified into three

chunks so that one chunk includes the region before the centromere, one chunk overlaps the



centromere, and the third chunk includes the region after the centromere. This allows us to

understand the drop in accuracy around centromeric regions.

9. Supplementary Tables

Low-coverage WGS imputation pipeline

Name Description Type Optional Default

app_pth apps path string true apps/

batch_id
string used to identify batch of data (set of
target samples) string true batch_00000

chr chromosome name string false

cnk_pth imputation chunk file path string true data/glimpse2/chunks/

conversion_instance_ty
pe

instance type used for reference panel
binary format conversions string true mem2_ssd1_v2_x4

imp_arg glimpse2 arguments string true

imputation_instance_ty
pe instance type used for glimpse2 imputation string true mem2_ssd1_v2_x4

map_pth genetic map path string true data/glimpse2/maps/

mount_inputs

whether to mount all files that were supplied
as inputs to the app instead of downloading
them to the local storage of the execution
worker boolean true true

out_pth output directory path string true /data/glimpse2/out/

project DNAnexus project name string false

ref_bcf_pth reference panel path in bcf file format string false

ref_pfx reference panel prefix name string true

ref_sfx reference panel suffix name string true

ref_bin_pth reference panel path in binary file format string true
data/glimpse2/ref_bin_ph
ased/

run_convert_reference
_module create reference panel in binary format boolean true false



run_impute_module perform genotype imputation boolean true true

tar_cram_pth target panel bam/cram path string true
data/glimpse2/target_dat
a/crams

Supplementary Table 1. Parameters of the low-coverage imputation pipeline.

SNP array imputation pipeline

Name Description Type Optional Default

app_pth apps path string true apps/

batch_id
string used to identify batch of data (set of
target samples) string true batch_00000

chr chromosome name string false

cnk_pth imputation chunk file path string true data/impute5/chunks/

conversion_instance_ty
pe instance type used for xcf conversions string true mem1_ssd1_v2_x4

imp_arg impute5 arguments string true

imputation_instance_ty
pe instance type used for impute5 imputation string true mem2_ssd1_v2_x4

map_pth genetic map path string true data/impute5/maps/

mount_inputs

whether to mount all files that were supplied
as inputs to the app instead of downloading
them to the local storage of the execution
worker boolean true false

out_pth output directory path string true /data/impute5/out/

phasing_instance_type instance type used for pre-phasing string true mem2_ssd1_v2_x4

phs_arg shapeit5 arguments string true

project DNAnexus project name string false

ref_bcf_pth reference panel path in bcf file format string true

ref_pfx reference panel prefix name string true

ref_sfx reference panel suffix name string true



ref_xcf_pth reference panel path in xcf file format string true
data/impute5/ref_xcf_ph
ased/

run_convert_reference
_module create reference panel in xcf format boolean true false

run_convert_target_mo
dule

perform conversion of the already phased
bcf files in xcf format, without running
prephasing boolean true false

run_impute_module perform genotype imputation boolean true true

run_phase_module
perform pre-phasing on the SNP array data
using shapeit5_phase_common boolean true false

tar_bcf_pth target panel path (unphased data) string true data/impute5/target_data

tar_pfx target panel prefix name string true

tar_sfx target panel suffix name string true

tar_xcf_pth target panel path (pre-phased data) string true
data/impute5/tar_xcf_ph
ased/

Supplementary Table 2. Parameters of the SNP array imputation pipeline.
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