Abstract
Some studies suggest an association between iron overload and cardiovascular diseases (CVDs). However, the relationship between dietary iron intake and atrial fibrillation (AF) remains uncertain, as does the role of genetic loci on this association. The study involved 179,565 participants from UK Biobank, tracking incident atrial fibrillation (AF) cases. Iron intake was categorized into low, moderate, and high groups based on dietary surveys conducted from 2009 to 2012. The Cox regression model was used to estimate the risk of AF in relation to iron intake, assessing the hazard ratio (HR) and 95% confidence interval (95% CI). It also examined the impact of 165 AF-related and 20 iron-related genetic variants on this association. Pathway enrichment analyses were performed using Metascape and FUMA. During a median follow-up period of 11.6 years, 6693 (3.97%) incident AF cases were recorded. A total of 35,874 (20.0%) participants had high iron intake. High iron intake was associated with increased risk of AF [HR: 1.13 (95% CI: 1.05, 1.22)] in a fully adjusted model. Importantly, there were 83 SNPs (11 iron-related SNPs) that could enhance the observed associations. These genes are mainly involved in cardiac development and cell signal transduction pathways. High dietary iron intake increases the risk of atrial fibrillation, especially when iron intake exceeds 16.95 mg. The association was particularly significant among the 83 SNPs associated with AF and iron, the individuals with these risk genes. Gene enrichment analysis revealed that these genes are significantly involved in cardiac development and cell signal transduction processes.</p>