WARNING: the interactive features of this website use CSS3, which your browser does not support. To use the full features of this website, please update your browser.
Abstract
Quantifying the effects of inbreeding is critical to characterizing the genetic architecture of complex traits. This study highlights through theory and simulations the strengths and shortcomings of three SNP-based inbreeding measures commonly used to estimate inbreeding depression (ID). We demonstrate that heterogeneity in linkage disequilibrium (LD) between causal variants and SNPs biases ID estimates, and we develop an approach to correct this bias using LD and minor allele frequency stratified inference (LDMS). We quantified ID in 25 traits measured in [Formula: see text] participants of the UK Biobank, using LDMS, and confirmed previously published ID for 4 traits. We find unique evidence of ID for handgrip strength, waist/hip ratio, and visual and auditory acuity (ID between -2.3 and -5.2 phenotypic SDs for complete inbreeding; [Formula: see text]). Our results illustrate that a careful choice of the measure of inbreeding combined with LDMS stratification improves both detection and quantification of ID using SNP data.