Abstract
BACKGROUND: Epidemiological evidence regarding the association between air pollutants and cardiopulmonary disease, mortality in individuals with preserved ratio impaired spirometry (PRISm), and their combined effects remains unclear.</p>
METHODS: We followed 36,149 participants with PRISm in the UK Biobank study. Annual concentrations of PM2.5, PM10, NO2, NOx, and SO2 at residential addresses were determined using a bilinear interpolation method, accounting for address changes. A multistate model assessed the dynamic associations between air pollutants and cardiopulmonary diseases and mortality in PRISm. Quantile g-computation was used to investigate the joint effects of air pollutants.</p>
RESULTS: Long-term exposure to PM2.5, PM10, NO2, NOx, and SO2 was significantly associated with the risk of cardiopulmonary disease in PRISm. The corresponding hazard ratios (HRs) [95 % confidence intervals (95 % CIs)] per interquartile range (IQR) were 1.49 (1.43, 1.54), 1.52 (1.46, 1.57), 1.34 (1.30, 1.39), 1.30 (1.26, 1.34), and 1.44 (1.41, 1.48), respectively. For mortality, the corresponding HRs (95 % CIs) per IQR were 1.36 (1.25, 1.47), 1.35 (1.24, 1.46), 1.27 (1.18, 1.36), 1.23 (1.15, 1.31), and 1.29 (1.20, 1.39), respectively. In PRISm, quantile g-computation analysis demonstrated that a quartile increase in exposure to a mixture of all air pollutants was positively associated with the risk of cardiopulmonary disease and mortality, with HRs (95 % CIs) of 1.84 (1.76, 3.84) and 1.45 (1.32, 1.57), respectively.</p>
CONCLUSION: Long-term individual and joint exposure to air pollutants (PM2.5, PM10, NO2, NOx, and SO2) might be an important risk factor for cardiopulmonary disease and mortality in high-risk populations with PRISm.</p>