Title: | Use of genetic correlations to examine selection bias |
Journal: | Genetic Epidemiology |
Published: | 30 Jul 2024 |
Pubmed: | https://pubmed.ncbi.nlm.nih.gov/39080969/ |
DOI: | https://doi.org/10.1002/gepi.22584 |
Title: | Use of genetic correlations to examine selection bias |
Journal: | Genetic Epidemiology |
Published: | 30 Jul 2024 |
Pubmed: | https://pubmed.ncbi.nlm.nih.gov/39080969/ |
DOI: | https://doi.org/10.1002/gepi.22584 |
WARNING: the interactive features of this website use CSS3, which your browser does not support. To use the full features of this website, please update your browser.
Observational studies are rarely representative of their target population because there are known and unknown factors that affect an individual's choice to participate (the selection mechanism). Selection can cause bias in a given analysis if the outcome is related to selection (conditional on the other variables in the model). Detecting and adjusting for selection bias in practice typically requires access to data on nonselected individuals. Here, we propose methods to detect selection bias in genetic studies by comparing correlations among genetic variants in the selected sample to those expected under no selection. We examine the use of four hypothesis tests to identify induced associations between genetic variants in the selected sample. We evaluate these approaches in Monte Carlo simulations. Finally, we use these approaches in an applied example using data from the UK Biobank (UKBB). The proposed tests suggested an association between alcohol consumption and selection into UKBB. Hence, UKBB analyses with alcohol consumption as the exposure or outcome may be biased by this selection.</p>
Application ID | Title |
---|---|
66074 | Developing and evaluating statistical methodology for quantitative bias analysis |
Enabling scientific discoveries that improve human health