Abstract
Background and Objective: Postexercise heart rate recovery (HRR) is an important indicator of cardiac autonomic function and abnormal HRR is associated with adverse outcomes. We hypothesized that deep learning on resting electrocardiogram (ECG) tracings may identify individuals with impaired HRR.</p>
Methods: We trained a deep learning model (convolutional neural network) to infer HRR based on resting ECG waveforms (HRRpred) among UK Biobank participants who had undergone exercise testing. We examined the association of HRRpred with incident cardiovascular disease using Cox models, and investigated the genetic architecture of HRRpred in genome-wide association analysis.</p>
Results: Among 56,793 individuals (mean age 57 years, 51% women), the HRRpred model was moderately correlated with actual HRR (r = 0.48, 95% confidence interval [CI] 0.47-0.48). Over a median follow-up of 10 years, we observed 2060 incident diabetes mellitus (DM) events, 862 heart failure events, and 2065 deaths. Higher HRRpred was associated with lower risk of DM (hazard ratio [HR] 0.79 per 1 standard deviation change, 95% CI 0.76-0.83), heart failure (HR 0.89, 95% CI 0.83-0.95), and death (HR 0.83, 95% CI 0.79-0.86). After accounting for resting heart rate, the association of HRRpred with incident DM and all-cause mortality were similar. Genetic determinants of HRRpred included known heart rate, cardiac conduction system, cardiomyopathy, and metabolic trait loci.</p>
Conclusion: Deep learning-derived estimates of HRR using resting ECG independently associated with future clinical outcomes, including new-onset DM and all-cause mortality. Inferring postexercise heart rate response from a resting ECG may have potential clinical implications and impact on preventive strategies warrants future study.</p>