Abstract
AIMS: Lipid-lowering medications are widely used to control blood cholesterol levels and manage a range of cardiovascular and lipid disorders. We aimed to explore the possible associations between LDL lowering and multiple disease outcomes or biomarkers.</p>
METHODS: We performed a Mendelian randomization phenome-wide association study (MR-PheWAS) in 337 475 UK Biobank participants to test for associations between four proposed LDL-C-lowering genetic risk scores (PCSK9, HMGCR, NPC1L1 and LDLR) and 1135 disease outcomes, with follow-up MR analyses in 52 serum, urine, imaging and clinical biomarkers. We used inverse-variance weighted MR in the main analyses and complementary MR methods (weighted median, weighted mode, MR-Egger and MR-PRESSO) as sensitivity analyses. We accounted for multiple testing with false discovery rate correction (P < 2.0 × 10-4 for phecodes, P < 1.3 × 10-2 for biomarkers).</p>
RESULTS: We found evidence for an association between genetically instrumented LDL lowering and 10 distinct disease outcomes, suggesting potential causality. All genetic instruments were associated with hyperlipidaemias and cardiovascular diseases in the expected directions. Biomarker analyses supported an effect of LDL-C lowering through PCSK9 on lung function (FEV [beta per 1 mg/dL lower LDL-C -1.49, 95% CI -2.21, -0.78]; FVC [-1.42, 95% CI -2.29, -0.54]) and through HMGCR on hippocampal volume (beta per 1 mg/dL lower LDL-C 6.09, 95% CI 1.74, 10.44).</p>
CONCLUSIONS: We found genetic evidence to support both positive and negative effects of LDL-C lowering through all four LDL-C-lowering pathways. Future studies should further explore the effects of LDL-C lowering on lung function and changes in brain volume.</p>