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Introduction	
	
This	document	describes	the	analysis	carried	out	to	perform	genotype	imputation	for	
the	interim	release	of	the	UK	Biobank	(UKB)	genotype	data.	It	also	provides	advice	
about	using	the	imputed	data	to	carry	out	genome	wide	association	studies	(GWAS)	or	
for	extracting	genotypes	for	use	as	covariates	in	other	types	of	association	study.		

Genotype	imputation1,2	is	the	process	of	predicting	genotypes	that	are	not	directly	
assayed	in	a	sample	of	individuals.	A	reference	panel	of	haplotypes	at	a	dense	set	of	
SNPs,	indels	and	structural	variants,	is	used	to	impute	genotypes	into	a	study	sample	of	
individuals	that	have	been	genotyped	at	a	subset	of	the	SNPs.	These	‘in	silico’	
genotypes	can	then	be	used	to	boost	the	number	of	SNPs	that	can	be	tested	for	
association.	This	increases	the	power	of	the	study,	the	ability	to	resolve	or	fine-map	the	
causal	variants	and	facilitates	meta-analysis.	The	result	of	the	imputation	process	is	a	
dataset	with	73,355,667	SNPs,	short	indels	and	large	structural	variants	in	152,249	
individuals.	See	Box	1	of	1	for	a	quick	visual	overview	of	how	genotype	imputation	
works.	

The	process	of	imputation	is	divided	into	two	steps	(i)	pre-phasing,	and	(ii)	imputation.	
In	the	first	step,	the	samples	to	be	imputed	are	‘pre-phased’	i.e	a	statistical	method	is	
applied	to	genotype	data	to	infer	the	underlying	haplotypes	of	each	individual.	In	the	
second	step,	a	different	statistical	method	is	used	to	combine	the	inferred	haplotypes	
with	a	reference	panel	of	haplotypes	and	impute	the	unobserved	genotypes	in	each	
sample.	The	following	two	sections	of	this	document	describe	how	the	pre-phasing	and	
imputation	was	carried	out	on	the	~150,000	samples.	

Phasing	and	imputation	can	be	a	computationally	intensive	process.	To	avoid	many	
different	research	groups	having	to	carry	this	out	independently,	phasing	and	
imputation	was	been	carried	out	centrally.		
	
Questions	about	using	the	imputed	genotypes	should	be	sent	to	the	UKB	Genetics	mail	
list	set	up	for	this	purpose.	You	can	subscribe	to	the	mail	list	here	
	
https://www.jiscmail.ac.uk/cgi-bin/webadmin?A0=UKB-GENETICS	
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Phasing	
	

Filtering	before	phasing	
	
To	create	an	input	data	for	the	phasing	we	applied	SNP	QC	filters	as	described	in	UK	
Biobank	QC	documention	3.	The	samples	were	genotyped	on	two	slightly	different	
chips.	Approximately	50,000	were	genotyped	as	part	of	the	UL	BiLEVE	study	using	a	
chip	designed	for	that	study	(denoted	UKBL),	with	the	remaining	samples	(~100,000)	
genotyped	on	the	UKB	chip.	Therefore,	we	applied	different	missingness	filters	on	SNPs	
dependent	upon	chip.	SNPs	were	removed	based	on	the	number	of	batches	in	which	
they	are	completely	missing:				

i. SNPs	on	both	UKB	chip	and	UKBL	chip	-	remove	them	if	they	are	missing	in	more	
than	3	batches	(out	of	33	batches)			

ii. SNPs	on	the	UKB	chip	and	not	the	UKBL	chip	-	remove	them	if	they	are	missing	
in	more	than	2	batches	(out	of	22	batches)				

iii. SNPs	on	the	UKBL	chip	and	not	the	UKB	chip	-	remove	them	if	they	are	missing	
in	more	than	1	batch	(out	of	11	batches)		

	
1,037	sample	outliers3	were	removed.	Multi-allelic	SNPs	and	SNPs	with	a	minor	allele	
frequency	(MAF)	<	1%	were	then	removed	from	the	dataset.	These	filters	resulted	in	a	
dataset	with	641,018	autosomal	SNPs	in	152,256	samples.	Chromosome	X	phasing	and	
imputation	will	be	carried	out	at	a	later	date.	
	

Phasing	method	description	
	
Phasing	on	the	autosomes	was	carried	out	using	a	modified	version	of	the	SHAPEIT24	
program	modified	to	allow	for	very	large	sample	sizes.	This	new	method	(which	we	
refer	to	as	SHAPEIT3)	modifies	SHAPEIT2’s	surrogate	family	approach	to	remove	a	
quadratic	complexity	component	of	the	algorithm5.	In	small	sample	sizes	of	a	few	
thousand	samples,	this	part	of	the	algorithm,	which	involves	calculating	Hamming	
distances	between	current	haplotypes	estimates,	contributes	only	a	relatively	small	
part	to	the	computational	cost.	As	sample	sizes	increase	over	10,000	samples	then	this	
component	becomes	significant.	The	new	algorithm	uses	a	divisive	clustering	algorithm	
to	identify	clusters	of	haplotypes,	and	then	calculates	Hamming	distances	only	
between	pairs	of	haplotypes	within	each	cluster.	Only	haplotypes	within	each	cluster	
are	used	as	candidates	for	the	surrogate	family	copying	states	in	the	HMM	model.	The	
resulting	algorithm	has	complexity	O(N	log	N)	where	N	is	the	number	of	haplotypes	in	
the	dataset	being	phased.	In	practice,	we	have	observed	that	the	method	exhibits	
scaling	close	to	linear.	This	is	a	crucial	feature	of	the	method,	especially	for	very	large	
sample	sizes,	and	a	property	not	shared	by	other	approaches6,7.	The	development	of	
this	approach	is	ongoing	and	there	is	substantial	scope	to	make	further	improvements	
in	speed	and	accuracy.	A	newer	version	is	likely	to	offer	an	order	of	magnitude	
reduction	in	speed.	



	 5	

Validation	of	the	phasing	method	
	
The	accuracy	of	this	new	method	was	assessed	by	taking	advantage	of	72	mother-
father-child	trios	that	were	identified	in	the	UKB	dataset3.	This	family	information	can	
be	used	to	infer	the	phase	of	a	large	number	of	SNPs	in	the	trio	parents.	These	family	
inferred	haplotypes	were	used	as	a	truth	set,	as	is	common	in	the	phasing	literature4.	
The	parents	of	each	trio	were	removed	from	the	dataset	and	then	haplotypes	were	
estimated	across	chromosome	20	in	a	single	run	of	SHAPEIT3.	This	dataset	consisted	of	
16,762	autosomal	SNPs.	The	inferred	haplotypes	were	then	compared	to	the	truth	set	
using	the	switch	error	metric4.	We	obtained	an	exceptionally	low	switch	error	rate	of	
0.4%	across	the	trio	children	reporting	British	ancestry.	By	adjusting	parameters	of	the	
method	we	have	observed	switch	error	rates	lower	than	0.3%.		
	
With	switch	error	rates	this	low,	long	chunks	of	sequence	of	many	megabases	will	be	
inferred	correctly.	Downstream	imputation	from	such	haplotypes	will	be	highly	
accurate.		
	
To	assess	the	performance	gain	of	phasing	all	152,112	samples	together,	versus	
phasing	in	smaller	subsets	of	samples	two	other	test	datasets	of	size	1,072	and	10,072	
samples	were	created,	also	containing	the	trio	children.	The	results	are	shown	in	full	
detail	in	Table	1	and	highlight	the	benefits	of	joint	phasing	of	all	the	samples.	These	
results	clearly	demonstrate	the	close	to	linear	scaling	of	the	SHAPEIT3	algorithm.		
	
	
Sample	size	 Method	 Switch	Error	

(%)	
Run	time	(hrs)	 Run	

Time	
Scaling	

Sample	
Size		

Scaling	

Threads		

1,072	 SHAPEIT3	 2.6	 0.25	 1	 1	 10	
10,072	 SHAPEIT3	 1.3	 2.5	 10	 9.4	 10	
152,112	 SHAPEIT3	 0.4	 38.5	 154	 142	 10	

Table	1	:	Phasing	performance	on	UKB	samples.		
	

Whole	genome	phasing	
	
Phasing	was	carried	out	in	chunks	of	5,000	SNPs,	with	an	overlap	of	250	SNPs	between	
chunks.	SHAPEIT3	was	run	on	each	chunk	using	4	cores	per	job	and	S=200	copying	
states.	As	a	part	of	the	phasing	process	any	remaining	missing	genotypes	were	imputed	
during	the	phasing.	Chunks	were	ligated	using	a	modified	version	of	the	hapfuse	
program.	
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Genotype	imputation	

Assessment	of	the	UK	Biobank	Array	for	imputation	
	
The	UK	Biobank	Axiom	array	from	Affymetrix	was	specifically	designed	to	optimize	
imputation	performance	in	GWAS	studies	8.	An	experiment	was	carried	out	to	assess	
the	imputation	performance	of	the	array,	stratified	by	allele	frequency,	and	to	compare	
performance	to	some	other	commercially	available	arrays.		

Performance	was	assessed	using	high-coverage,	whole-genome	sequence	data	made	
publicly	available	by	Complete	Genomics	(CG).	

Data	from	10	samples	from	the	European	ancestry	(CEU)	population	was	used.	All	
variant	sites	with	a	call	rate	below	90%	were	filtered	out	in	order	to	only	consider	very	
reliable	sites	in	the	analysis.	Only	data	from	chromosome	20	was	used.	
	
To	mimic	a	typical	imputation	analysis,	a	pseudo-GWAS	dataset	was	constructed	by	
extracting	the	CG	SNP	genotypes	at	all	the	sites	included	on	a	given	array.	All	sites	not	
on	the	array	were	then	imputed	using	the	UK10K	reference	panel	9.	Imputation	was	
carried	out	using	IMPUTE2	10	which	chooses	a	custom	reference	panel	for	each	study	
individual	in	each	1	Mb	segment	of	the	genome.	The	khap	parameter	of	IMPUTE2	was	
set	to	1,000.	All	other	parameters	were	set	to	default	values.	This	experiment	was	
repeated	for	4	different	genome-wide	SNP	arrays	(a)	Affymetrix	UK	Biobank	Axiom	
array	(b)	Illumina	Omni	2.5M	array	(c)	Illumina	Omni	1M	Quad	(d)	Illumina	Omni	
Express.		
	
Variants	were	stratified	into	allele	frequency	bins	and	the	squared	correlation	(R2)	was	
calculated	between	the	allele	dosages	at	variants	in	each	bin	with	the	masked	CG	
genotypes.	Since	different	arrays	contain	different	numbers	of	variants	it	is	important	
to	make	sure	that	imputation	performance	is	measured	at	the	same	set	of	variants	
when	comparing	chips.	To	achieve	this,	both	imputed	and	array	variants	were	included	
in	the	R2	analysis,	so	that	the	comparison	measures	the	overall	performance	of	each	
array.	As	a	consequence,	an	array	with	more	variants	will	gain	an	advantage,	as	it	is	
reasonable	to	expect	that	directly	genotyping	a	variant	will	yield	more	accurate	
genotypes	than	imputation.	Figure	1	shows	the	results	of	this	analysis.	The	x-axis	is	
non-reference	allele	frequency	(%)	on	a	log	scale,	which	focuses	in	on	rarer	variants.	
The	y-axis	is	imputation	performance	(R2).		
	
The	salient	points	are			

a. the	UK	Biobank	chip	(purple)	outperforms	the	Illumina	Omni	1M	Quad	(blue)	
and	Illumina	Omni	Express	(green),	both	which	have	comparable	numbers	of	
variants.		

b. The	UK	Biobank	chip	performs	almost	as	well	as	the	Illumina	2.5M	chip	(red),	
which	has	~3	times	the	number	of	SNPs.	It	is	worth	noting	that	the	UKB	chip	and	
Illumina	Omni	2.5M	chip	are	very	close	in	the	1-5%	range.	A	likely	consequence	
of	the	chip	design	process	focusing	in	part	on	this	frequency	range	8.	
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The	overall	conclusion	of	this	analysis	is	that	the	Affymetrix	UKB	array	is	a	very	good	
array	from	which	to	carry	out	genotype	imputation.	The	caveat	is	that	this	analysis	is	
focused	on	samples	with	European	ancestry.	

	
	
Figure	1	:	Comparison	of	imputation	performance	of	the	UK	Biobank	Array	and	several	
other	commercially	available	genotyping	arrays.	
	

Reference	panel	used	for	imputation	
	
There	are	a	number	of	factors	that	influence	the	accuracy	of	genotype	imputation	1,	
but	generally	accuracy	will	increase	as	the	number	of	haplotypes	in	the	reference	panel	
grows	and	if	the	ancestry	of	the	sample	haplotypes	is	a	good	match	to	the	ancestry	of	
the	reference	panel	haplotypes.	The	UKB	dataset	consists	of	samples	with	a	diverse	
range	of	ancestries,	but	with	the	majority	of	samples	having	British	(or	European)	
ancestry.	For	this	reason	it	was	desirable	to	use	a	reference	panel	with	a	large	number	
of	haplotypes	with	British	and	European	ancestry,	and	also	a	diverse	set	of	haplotypes	
from	other	world-wide	populations.	To	achieve	this	the	UK10K	haplotype	reference	
panel	was	merged	together	with	the	1000	Genomes	Phase	3	reference	panel	using	the	
–merge_ref_panels	option	in	the	IMPUTE2	software	(link).	
	
Using	this	merged	panel	has	been	shown	to	produce	a	high-quality	reference	panel	for	
imputation9.	An	advantage	of	this	reference	panel	is	that	it	includes	SNPs,	short	indels	
and	larger	structural	variants.		The	reference	panel	consists	of	87,696,888	bi-allelic	
variants	in	12,570	haplotypes.		
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Imputation	method	description	
	
Imputation	was	carried	out	using	the	same	algorithm	as	is	implemented	in	the	
IMPUTE2	program.	The	current	IMPUTE2	program	is	a	very	flexible	tool	for	phasing	and	
imputation	that	implements	a	general	set	of	options.	A	new	C++	program	was	written	
from	scratch	to	focus	exclusively	on	haploid	imputation	needed	when	samples	have	
been	pre-phased.	This	new	version	is	both	memory	and	computationally	efficient	
compared	to	IMPUTE2.	The	method	takes	advantage	of	high	correlations	between	
inferred	copying	states	in	the	HMM	to	reduce	computation.	We	refer	to	this	program	
as	IMPUTE3.		

Whole	genome	imputation	
	
Imputation	was	carried	out	in	chunks	of	2Mb	with	a	250kb	buffer	region.	A	set	of	2,000	
haplotype	copying	states	were	used	to	impute	each	sample.	Imputed	variants	in	each	
non-overlapping	part	of	each	chunk	were	concatenated	into	per-chromosome	files.	

Information	scores,	minor	allele	frequencies	and	filtering		
	
QCTOOL	was	used	to	calculate	the	minor	allele	frequency	(MAF)	and	imputation	
information	score	of	each	imputed	variant.	The	imputation	information	is	a	metric	
between	0	and	1.	A	value	of	1	indicates	that	there	is	no	uncertainty	in	the	imputed	
genotypes	whereas	a	value	of	0	means	that	there	is	complete	uncertainty	about	the	
genotypes.	A	value	of	α	in	a	sample	of	N	individuals	indicates	that	the	amount	of	data	
at	the	imputed	SNP	is	approximately	equivalent	to	a	set	of	perfectly	observed	genotype	
data	in	a	sample	size	of	αN.		

Many	GWAS	carried	out	to	date	have	used	filters	on	MAF	and	information	score	by	
applying	a	threshold	on	these	metrics.	There	is	no	single	correct	threshold	to	use.	
However,	as	MAF	decreases	it	is	generally	the	case	that	imputation	quality	decreases.	
Previous	studies	have	tended	to	use	a	filter	on	information	between	0.3-0.5.	Since	
these	studies	have	typically	consisted	of	hundreds	or	low	thousands	of	samples	an	
information	of	0.3	corresponds	to	an	effective	sample	size	with	limited	power	to	detect	
associations.	However,	the	UK	Biobank	dataset	is	considerably	larger	in	size	than	most	
previous	GWAS.	An	information	measure	of	0.3	in	~150,000	samples	roughly	
corresponds	to	an	effective	sample	size	of	~45,000,	which	would	be	expected	to	yield	
very	good	power	to	detect	association.	

Some	variants	are	imputed	as	monomorphic,	or	close	to	monomorphic	i.e.	no	or	almost	
no	variation	in	the	genotypes.	Such	sites	were	removed	using	QCTOOL	using	a	filter	on	
MAF	of	0.001%.	In	addition,	7	samples	were	removed	from	the	dataset	due	to	these	
individuals	having	requested	their	data	be	removed	from	the	study.	The	resulting	
dataset	consists	of	73,355,667	variants	in	152,249	individuals.	

The	distribution	of	information	scores	at	these	73,355,667	variants	is	shown	in	Figure	2	
(a).	Plots	stratified	by	MAF	are	also	shown	(b)	MAF	>	5%	(c)	1%<=MAF<5%	(d)	
0.1%<=MAF<1%	(e)	0.01%<=MAF<0.1%	(f)	0.001%<=MAF<0.01%.		
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Figure	2	:	Distribution	of	information	scores	at	variants	in	the	imputed	dataset.	The	x-
axis	shows	the	information	score	on	the	scale	0	to	1.	

Imputed	genotype	files	
	
Let	Gij	denote	the	genotype	of	the	ith	sample	at	the	jth	variant.	The	process	of	genotype	
imputation	produces	a	probability	distribution	for	each	genotype	i.e.			

pij0	=	P(Gij	=	AA)	 	 pij1	=	P(Gij	=	AB)	 	 pij2	=	P(Gij	=	BB)		

where	A	and	B	are	the	two	alleles	at	the	variant.	This	probability	triple	(which	sums	to	
1)	is	provided	in	the	imputed	genotype	files	for	each	imputed	variants	in	all	samples.	
SNP	variants	included	in	the	phased	dataset	also	occur	in	the	imputed	files	in	this	
format.	

The	imputed	data	is	provided	in	a	compressed	binary	BGEN	file	format.	The	BGEN	file	
format	is	a	binary	version	of	the	GEN	file	format.	

The	BGEN	file	format	was	chosen	to	provide	good	compression	of	the	imputed	data	
and	ease	of	use	for	genetic	association	testing	against	traits	and	phenotypes.	For	
example,	programs	commonly	used	such	as	SNPTEST	and	PLINK		already	read	BGEN	
files,	and	QCTOOL	can	be	used	to	filter,	summarize,	manipulate	and	convert	the	files	to	
other	formats.		

The	format	stores	one	variant	at	a	time	(i.e.	per	row).	As	MAF	decreases	more	
compression	is	possible	due	to	increased	similarity	between	imputed	genotypes	across	
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samples.	The	total	size	of	the	UKB	Interim	release	dataset	is	1.3Tb,	with	each	
chromosome	file	ranging	in	size	from	20Gb	to	109Gb.	As	the	file	format	is	binary	the	
files	are	not	viewable	in	normal	text	editors.	Later	in	this	document	there	is	advice	and	
guidance	on	working	with	these	files.	

The	files	are	named	as	

chrNimpv1.bgen	

where	N	is	the	number	of	the	autosome	(N	=	1,….,22).	

RS	IDs	were	added	into	the	BGEN	files	for	as	many	variants	as	possible	using	available	
RS	ID	lists	available	from	the	UK10K	website	and	the	1000	Genomes	website.	

RS	IDs	are	useful,	unique	identifiers	of	SNPs	and	other	variants	and	can	be	looked	up	in	
the	dbSNP	database.	When	researchers	report	associations	of	variants	with	diseases	
and	traits	they	normally	report	the	results	using	the	RS	ID.	

Variant	positions	are	reported	in	Genome	Reference	Consortium	Human	genome	build	
37	co-ordinates	(GRChb37).	

Sample	files	
	
In	addition	to	the	22	autosomal	BGEN	files,	there	is	file	called					impv1.sample	

This	file	(refered	to	as	the	`sample	file’)	is	the	part	of	the	BGEN	file	format	that	stores	
information	about	each	sample	in	the	dataset.	The	format	of	this	file	is	described	on	
the	GEN	file	format	webpage.	

The	sample	file	has	two	header	lines,	followed	by	1	line	for	each	individual	in	the	BGEN	
file.	The	order	of	the	individuals	in	the	sample	file	matches	the	order	of	the	individuals	
in	the	BGEN	file.	The	order	is	important.	Programs	that	read	bgen/sample	pairs	assume	
that	the	order	matches	between	the	files.		

The	sample	file	can	be	used	to	store	information	about	each	individual	i.e.	phenotypes	
and	covariates.	If	phenotypes	and	covariates	are	added	into	the	sample	file	then	
SNPTEST	can	be	used	to	carry	out	association	testing	at	each	variant.	Care	should	be	
taken	in	making	sure	that	such	information	is	correctly	added	to	sample	files.	The	
format	allows	discrete	and	continuous	phenotypes	and	covariates,	as	well	as	missing	
values	(see	file	format	webpage	link	above).		

Differences	between	raw	genotypes	and	imputed	files	
	
SNPs	below	1%	MAF	were	filtered	out	before	the	phasing	step,	however	many	of	these	
SNPs	will	have	been	imputed.	Therefore	these	SNPs	will	appear	in	the	raw	genotype	
files,	and	the	imputed	files,	but	may	have	different	genotypes.	As	such,	researchers	
should	not	be	surprised	if	the	results	of	analysis	at	these	SNPs	differ	dependent	upon	
which	files	are	used.		
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An	exemplar	genome	wide	association	study	
	
A	GWAS	for	the	phenotype	of	height	was	carried	out	to	assess	the	use	of	the	UK	
Biobank	genetic	data	as	a	resource	for	genetic	association	studies.	There	are	already	a	
substantial	number	of	replicated	associations	11.	The	purpose	of	this	analysis	was	not	to	
report	new	associations,	but	rather	to	check	that	a	reasonably	standard	GWAS	pipeline	
produced	valid	results.	

Sample	filtering	
	
Principal	component	analysis	and	the	self-declared	ethnicity	were	used	to	derive	a	
“White	British”	subset	of	samples.	In	addition,	samples	were	excluded	if	they	had		

(a) at	least	one	related	sample		
(b) 	a	genetically	inferred	gender	that	did	not	match	the	self-reported	gender.	
(c) ~500	extreme	outliers	3.		

	
These	filters	resulted	in	a	dataset	with	112,338	samples.	

Taking	account	of	the	different	arrays	used	
	
Some	SNPs	are	only	included	on	one	of	the	UKBB	or	UKBL	arrays.	At	such	SNPs,	missing	
genotypes	will	have	been	imputed	as	part	of	the	phasing	process,	so	that	these	SNPs	
will	consist	of	a	mixture	of	genotyped	and	imputed	SNPs.	This	can	lead	to	bias	in	
association	testing	if	there	is	some	correlation	between	the	phenotype	and	which	array	
a	sample	was	assayed	on.	The	samples	involved	in	the	UKBL	study	were	selected	based	
on	phenotypes	associated	with	lung	function12,	thus	it	may	be	possible	for	such	
associations	to	occur.	There	are	at	least	2	solutions	to	ameliorate	any	possible	
confounding	due	to	array		
	

a. carry	out	association	tests	conditioning	on	a	binary	indicator	of	array.		
b. carry	out	separate	tests	of	association	in	UKBB	samples	and	UKBL	samples	and	

combine	the	results	using	meta-analysis.	

Association	testing	
	
GWAS	was	performed	at	all	variants	using	SNPTEST.	An	additive	genetic	model	was	
fitted	at	each	SNP,	using	gender,	age,	array	and	10	principal	components	as	covariates.	
That	is,	the	example	uses	option	(a)	above.	
	
The	program	option	–method	expected	was	used	in	the	SNPTEST	software,	which	
converts	the	genotype	probability	triple	to	an	expected	genotype,	dij,	(often	called	the	
dosage),	calculated	as	

𝑑!" = 𝑘𝑝!"#

!

!!!
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Results	
	
The	GWAS	for	height	produced	a	substantial	number	of	associated	regions.	These	
regions	had	a	high	correspondence	to	those	genetic	regions	that	have	previously	been	
replicated	for	height	and	described	in	the	NHGRI	GWAS	Catalog	11.	The	analysis	
suggested	a	significant	number	of	novel	loci	could	be	identified.	Figure	3	shows	a	plot	
of	the	–log10	p-values	for	the	height	and	BMI	scans	on	chromosome	4.	
	
	

	
	
Figure	3	:	Chromosome	4	GWAS	for	height.	The	x-axis	shows	physical	position.	The	y-
axis	is	–log10	p-value	for	each	tested	variant.	Variants	on	the	array	are	shown	as	black	
dots,	imputed	variants	are	shown	as	grey	dots.	Reported	associations	from	the	NHGRI	
GWAS	Catalog	are	shown	as	red	crosses.	The	blue	and	red	horizontal	lines	are	drawn	at	
a	–log10	p-value	of	5	and	7.5	respectively.	
	

File	processing	
	
We	recommend	that	researchers	use	the	QCTOOL	program	to	handle	the	BGEN	files.	
This	program	has	options	for	extraction	or	removal	of	subsets	of	the	data	(SNPs	and/or	
samples),	and	for	file	format	conversion.		See	the	QCTOOL	examples	page	for	
information	on	command	lines	used	to	perform	specific	tasks.	
	
The	program	SNPTEST	can	process	BGEN	files.		It	will	automatically	detect	the	BGEN	file	
format	if	data	files	are	named	with	the	.bgen	extension.	
	
PLINK	v1.9	can	process	BGEN	files;	at	the	time	of	writing	BGEN	files	are	specified	using	
the	--bgen	option.	
	
For	further	information	on	tools	supporting	the	BGEN	format,	see	the	BGEN	file	format	
website.	
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