Abstract
BACKGROUND: The effects of air pollutants on cardiometabolic diseases (CMDs) have been widely explored, whereas their influences on cardiometabolic multi-morbidity (CMM) were not clear.</p>
METHODS: We employed the UK Biobank cohort (N = 317,160) to study the association between six air pollutants (PM2.5, PM10, PM2.5-10, PM2.5abs, NO2, and NOx) and four CMDs including type II diabetes (T2D), coronary artery disease (CAD), stroke and hypertension. CMM was defined as occurrence of two or more of the four diseases. Multi-state Cox models were performed to estimate hazard ratio (HR) and its 95% confidence interval (95%CI).</p>
RESULTS: During a median follow-up of 12.8 years, 52,211 participants developed only one CMD, 15,446 further developed CMM, and 16,861 ultimately died. It was demonstrated that per interquartile range increase (IQR) increases in PM2.5, PM10, PM2.5-10, PM2.5abs, NO2, and NOx would increase 12% (9%-15%), 4% (1%-7%), 3% (1%-6%), 7% (4%-10%), 11% (8%-15%) and 10% (7%-13%) higher risk of developing one CMD from health baseline; 7% (2%-12%), 8% (3%-13%), 6% (2%-11%), 10% (5%-15%), 13% (7%-18%) and 10% (5%-15%) greater risk of occurring CMM from one CMD baseline; and 11% (-2%∼26%), 22% (7%-38%), 17% (3%-32%), 31% (16%-49%), 33% (17%-51%) and 32% (17%-50%) larger risk of causing death from CMM baseline, respectively.</p>
CONCLUSIONS: We revealed that people living in areas with high air pollution suffered from higher hazard of CMD, CMM and all-cause mortality; our findings implied keeping clean air was an effective approach to prevent or mitigate initiation, progression, and death from healthy to CMDs and from CMDs to CMM.</p>