Abstract
AIMS: To develop and externally validate the LIFE-T1D model for the estimation of lifetime and 10-year risk of cardiovascular disease (CVD) in individuals with type 1 diabetes.</p>
MATERIALS AND METHODS: A sex-specific competing risk-adjusted Cox proportional hazards model was derived in individuals with type 1 diabetes without prior CVD from the Swedish National Diabetes Register (NDR), using age as the time axis. Predictors included age at diabetes onset, smoking status, body mass index, systolic blood pressure, glycated haemoglobin level, estimated glomerular filtration rate, non-high-density lipoprotein cholesterol, albuminuria and retinopathy. The model was externally validated in the Danish Funen Diabetes Database (FDDB) and the UK Biobank.</p>
RESULTS: During a median follow-up of 11.8 years (interquartile interval 6.1-17.1 years), 4608 CVD events and 1316 non-CVD deaths were observed in the NDR (n = 39 756). The internal validation c-statistic was 0.85 (95% confidence interval [CI] 0.84-0.85) and the external validation c-statistics were 0.77 (95% CI 0.74-0.81) for the FDDB (n = 2709) and 0.73 (95% CI 0.70-0.77) for the UK Biobank (n = 1022). Predicted risks were consistent with the observed incidence in the derivation and both validation cohorts.</p>
CONCLUSIONS: The LIFE-T1D model can estimate lifetime risk of CVD and CVD-free life expectancy in individuals with type 1 diabetes without previous CVD. This model can facilitate individualized CVD prevention among individuals with type 1 diabetes. Validation in additional cohorts will improve future clinical implementation.</p>