WARNING: the interactive features of this website use CSS3, which your browser does not support. To use the full features of this website, please update your browser.
Abstract
Cardiovascular disease (CVD), the leading cause of death globally, is associated with complicated underlying risk factors. We develop an artificial intelligence model to identify CVD using multimodal data, including clinical risk factors and fundus photographs from the Samsung Medical Center (SMC) for development and internal validation and from the UK Biobank for external validation. The multimodal model achieves an area under the receiver operating characteristic curve (AUROC) of 0.781 (95% confidence interval [CI] 0.766-0.798) in the SMC and 0.872 (95% CI 0.857-0.886) in the UK Biobank. We further observe a significant association between the incidence of CVD and the predicted risk from at-risk patients in the UK Biobank (hazard ratio [HR] 6.28, 95% CI 4.72-8.34). We visualize the importance of individual features in photography and traditional risk factors. The results highlight that non-invasive fundus photography can be a possible predictive marker for CVD.
7 Authors
Yeong Chan Lee
Jiho Cha
Injeong Shim
Woong-Yang Park
Se Woong Kang
Dong Hui Lim
Hong-Hee Won
Enabling scientific discoveries that improve human health