Abstract
In just over a decade, advances in genome-wide association studies (GWAS) have offered an approach to stratify individuals based on genetic risk for disease. Using recent Alzheimer's disease (AD) GWAS results as the base data, we determined each individual's polygenic risk score (PRS) in the UK Biobank dataset. Using individuals within the extreme risk distribution, we performed a GWAS that is agnostic of AD phenotype and is instead based on known genetic risk for disease. To interpret the functions of the new risk factors, we conducted phenotype analyses, including a phenome-wide association study. We identified 246 loci surpassing the significance threshold of which 229 were not reported in the base AD GWAS. These include loci that showed suggestive levels of association in the base GWAS and loci not previously suspected to be associated with AD. Among these, there are loci, such as IL34 and KANSL1, that have since been shown to be associated with AD in recent studies. We also show highly significant genetic correlations with multiple health-related outcomes that provide insights into prodromal symptoms and comorbidities. This is the first study to utilize PRS as a phenotype-agnostic group classification in AD genetic studies. We identify potential new loci for AD and detail phenotypic analysis of these PRS extremes.
6 Authors
- Catarina Gouveia
- Elizabeth Gibbons
- Nadia Dehghani
- James Eapen
- Rita Guerreiro
- Jose Bras
1 Application
Application ID | Title |
11036 | Identifying traits associated with parkinsonism and dementia hits from genome-wide association studies |