WARNING: the interactive features of this website use CSS3, which your browser does not support. To use the full features of this website, please update your browser.
Abstract
Breast cancer is the most commonly diagnosed malignancy in women; thus, more cancer prevention research is urgently needed. The aim of this study was to predict potential therapeutic agents for breast cancer and determine their molecular mechanisms using integrated bioinformatics. Summary data from a large genome-wide association study of breast cancer was derived from the UK Biobank. The gene expression profile of breast cancer was from the Oncomine database. We performed a network-wide association study and gene set enrichment analysis to identify the significant genes in breast cancer. Then, we performed Gene Ontology analysis using the STRING database and conducted Kyoto Encyclopedia of Genes and Genomes pathway analysis using Cytoscape software. We verified our results using the Gene Expression Profile Interactive Analysis, PROgeneV2, and Human Protein Atlas databases. Connectivity map analysis was used to identify small-molecule compounds that are potential therapeutic agents for breast cancer. We identified 10 significant genes in breast cancer based on the gene expression profile and genome-wide association study. A total of 65 small-molecule compounds were found to be potential therapeutic agents for breast cancer.
7 Authors
Xiao Sun
Zhenzhen Luo
Liuyun Gong
Xinyue Tan
Jie Chen
Xin Liang
Mengjiao Cai
Enabling scientific discoveries that improve human health