Abstract
CONTEXT: Estradiol is the primary female sex hormone and plays an important role for skeletal health in both sexes. Several enzymes are involved in estradiol metabolism, but few genome-wide association studies (GWAS) have been performed to characterize the genetic contribution to variation in estrogen levels.</p>
OBJECTIVE: Identify genetic loci affecting estradiol levels and estimate causal effect of estradiol on bone mineral density (BMD).</p>
DESIGN: We performed GWAS for estradiol in males (n = 147 690) and females (n = 163 985) from UK Biobank. Estradiol was analyzed as a binary phenotype above/below detection limit (175 pmol/L). We further estimated the causal effect of estradiol on BMD using Mendelian randomization.</p>
RESULTS: We identified 14 independent loci associated (P < 5 × 10-8) with estradiol levels in males, of which 1 (CYP3A7) was genome-wide and 7 nominally (P < 0.05) significant in females. In addition, 1 female-specific locus was identified. Most loci contain functionally relevant genes that have not been discussed in relation to estradiol levels in previous GWAS (eg, SRD5A2, which encodes a steroid 5-alpha reductase that is involved in processing androgens, and UGT3A1 and UGT2B7, which encode enzymes likely to be involved in estradiol elimination). The allele that tags the O blood group at the ABO locus was associated with higher estradiol levels. We identified a causal effect of high estradiol levels on increased BMD in both males (P = 1.58 × 10-11) and females (P = 7.48 × 10-6).</p>
CONCLUSION: Our findings further support the importance of the body's own estrogen to maintain skeletal health in males and in females.</p>