Abstract
Smoking accelerates the ageing of multiple organs. However, few studies have quantified the association between smoking, especially smoking cessation, and brain ageing. Using structural magnetic resonance imaging data from the UK Biobank (n = 33,293), a brain age predictor was trained using a machine learning technique in the non-smoker group (n = 14,667) and then tested in the smoker group (n = 18,626) to determine the relationships between BrainAge Gap (predicted age - true age) and smoking parameters. Further, we examined whether smoking was associated with poorer cognition and whether this relationship was mediated by brain age. The predictor achieved an appreciable performance in training data (r = 0.712, mean-absolute-error [MAE] = 4.220) and test data (r = 0.725, MAE = 4.160). On average, smokers showed a larger BrainAge Gap (+0.304 years, Cohens'd = 0.083) than controls, more explicitly, the extents vary depending on their smoking characteristic that active regular smokers had the largest BrainAge Gap (+1.190 years, Cohens'd = 0.321), and light smokers had a moderate BrainAge Gap (+0.478, Cohens'd = 0.129). The increased smoking amount was associated with a larger BrainAge Gap (β = 0.035, p = 1.72 × 10-20) while a longer duration of quitting smoking in ex-smokers was associated with a smaller BrainAge Gap (β = -0.015, p = 2.14 × 10-05). Furthermore, smoking was associated with poorer cognition, and this relationship was partially mediated by BrainAge Gap. The study provides insight into the association between smoking, brain ageing, and cognition, which provide more publicly acceptable propaganda against smoking.</p>