Abstract
Identifying the genes that contribute to the variability in brain regions involved in language processing may shed light on the evolution of brain structures essential to the emergence of language in Homo sapiens. The superior temporal asymmetrical pit (STAP), which is not observed in chimpanzees, represents an ideal phenotype to investigate the genetic variations that support human communication. The left STAP depth was significantly associated with a predicted enhancer annotation located in the 14q23.1 locus, between DACT1 and KIAA0586, in the UK Biobank British discovery sample (N = 16 515). This association was replicated in the IMAGEN cohort (N = 1726) and the UK Biobank non-British validation sample (N = 2161). This genomic region was also associated to a lesser extent with the right STAP depth and the formation of sulcal interruptions, "plis de passage," in the bilateral STAP but not with other structural brain MRI phenotypes, highlighting its notable association with the superior temporal regions. Diffusion MRI emphasized an association with the fractional anisotropy of the left auditory fibers of the corpus callosum and with networks involved in linguistic processing in resting-state functional MRI. Overall, this evidence demonstrates a specific relationship between this locus and the establishment of the superior temporal regions that support human communication.</p>