Abstract
OBJECTIVE: Metabolic syndrome (MetS) has been linked to dementia. In this study, we examined the association of MetS with neuroimaging and cognition in dementia-free adults, offering insight into the impact of MetS on brain health prior to dementia onset.</p>
RESEARCH DESIGN AND METHODS: We included 37,395 dementia-free adults from the UK Biobank database. MetS was defined as having at least three of the following components: larger waist circumference; elevated levels of triglycerides, blood pressure, HbA1c; or reduced HDL cholesterol levels. Multivariable-adjusted linear regression was used to assess associations of MetS with structural neuroimaging and cognitive domains.</p>
RESULTS: MetS was associated with lower total brain (standardized β: -0.06; 95% CI -0.08, -0.04), gray matter (β: -0.10; 95% CI -0.12, -0.08) and hippocampal (for left side, β: -0.03, 95% CI -0.05, -0.01; for right side, β: -0.04, 95% CI -0.07, -0.02) volumes, and greater white matter hyperintensity (WMH) volume (β: 0.08; 95% CI 0.06, 0.11). Study participants with MetS performed poorer on cognitive tests of working memory (β: -0.10; 95% CI -0.13, -0.07), verbal declarative memory (β: -0.08; 95% CI -0.11, -0.05), processing speed (β: -0.06; 95% CI -0.09, -0.04), verbal and numerical reasoning (β: -0.07; 95% CI -0.09, -0.04), nonverbal reasoning (β: -0.03; 95% CI -0.05, -0.01), and on tests of executive function, where higher scores indicated poorer performance (β: 0.05; 95% CI 0.03, 0.08). More MetS components were also associated with less brain volume, greater WMH, and poorer cognition across all domains.</p>
CONCLUSIONS: MetS was associated poorer brain health in dementia-free adults, characterized by less brain volume, greater vascular pathology, and poorer cognition. Further research is necessary to understand whether reversal or improvement of MetS can improve brain health.</p>