WARNING: the interactive features of this website use CSS3, which your browser does not support. To use the full features of this website, please update your browser.
Abstract
Modern GWAS studies use an enormous sample size and ultra-high density SNP genotypes. These conditions reduce the mapping resolution of marginal association tests-the method most often used in GWAS. Multi-locus Bayesian Variable Selection (BVS) offers a one-stop solution for powerful and precise mapping of risk variants and polygenic risk score (PRS) prediction. We show (with an extensive simulation) that multi-locus BVS methods can achieve high power with a low false discovery rate and a much better mapping resolution than marginal association tests. We demonstrate the performance of BVS for mapping and PRS prediction using data from blood biomarkers from the UK-Biobank (~300,000 samples and ~5.5 million SNPs). The article is accompanied by open-source R-software that implement the methods used in the study and scales to biobank-sized data.</p>