
UK Biobank WES Protocol / September 2021

The UKB WES protocol describes the single- and aggregate-sample processing,
including read alignment, variant calling, joint genotyping and post aggregation
reformatting, employed by the Regeneron Genetics Center to generate the UK Biobank
WES data set for public release. Following this protocol, researchers can aggregate their
own sequencing data with the UK Biobank single sample data, enabling mega-analysis.

1. Aligning whole exome sequencing (WES) reads to a reference genome

The UKB WES data are reference-aligned with the OQFE protocol, which employs BWA
MEM to map all reads to the GRCh38 reference in an alt-aware manner, marks read
duplicates, and adds additional per-read tags. The OQFE protocol retains all reads and
original quality scores such that the original FASTQ is completely recoverable from the
resulting CRAM file. All constituent steps of the OQFE protocol are executed with open-
source software and described in detail in the OQFE manuscript linked above. Given the
impact even small changes to the protocol can introduce into large analyses, the OQFE
protocol is available as a Docker file and as an app on DNAnexus that executes the OQFE
Docker file1.

The OQFE Docker file takes either FASTQ or CRAM files as inputs and outputs an OQFE
CRAM, ensuring that all steps are executed exactly as specified in the OQFE protocol.
We strongly recommend that users seeking to harmonize their data with UKB WES data
execute the OQFE protocol via these implementations.

2. Variant calling using DeepVariant

This section of the UKB WES protocol describes the variant calling using DeepVariant
(https://github.com/google/deepvariant). To call variants in WES data, either the default
DeepVariant WES model or a custom model can be used. The custom model that is
trained on WES data generated by Regeneron Genetics Center and used for the
generation of UK Biobank data is available as supplementary materials in Krasheninina
et al., 2020 (https://www.biorxiv.org/content/10.1101/2020.12.15.356360v1).

2.1 Prerequisites:
a) DeepVariant v0.10.0 docker file
b) OQFE CRAM generated by following section 1 of this protocol (e.g.

aligned.cram)
c) GRCh38 reference sequences (e.g. references.fa, detailed in OQFE protocol)
d) Calling regions in BED format (e.g. calling_regions.bed)
e) A custom model file, if applicable

docker run deepvariant –model_type=WES –ref=references.fa –reads=aligned.cram –regions calling_regions.bed
–output_gvcf=sample.gvcf –num_shards=<num_threads> --customized_model <model_file>

1 https://hub.docker.com/r/dnanexus/oqfe and https://blog.dnanexus.com/2021-01-21-new-pipeline-public-
sequencing-datasets-oqfe/

Command section Annotation
docker run Docker run
deepvariant Deepvariant docker file
–model_type=WES Whole Exome Sequencing model
–ref=references.fa Reference sequences
–reads=aligned.cram Alignment file
–regions calling_regions.bed Calling regions in BED format
–output_gvcf=sample.gvcf Output gVCF file
–num_shards=<num_threads> Number of threads
--customized_model <model_file> Specify the customized model file, if applicable

3. Aggregation and genotype harmonization using GLnexus to generate a multi-
sample project-level VCF (pVCF)

This section of the UKB WES protocol describes the aggregation of variant genotypes
and variant allele harmonization across sample-level gVCFs into multi-sample project-
level VCF file (pVCF) organized in chromosomes or genomic segments using GLnexus,
containing a row for every set of overlapping variants and each sample’s genotype for
every variant allele. This pVCF is “squared-off”, in that for samples that do not contain an
alternative allele genotype for a given variant, genotypes are derived from the gVCF
reference blocks, reporting the read depth and most likely genotype (i.e. 0/0 or missing)
for that sample at that variant position.

The GLnexus aggregation process requires only the gVCFs and the desired aggregation
regions in the BED format (BED format specifications,
https://m.ensembl.org/info/website/upload/bed.html) as inputs. The BED file for UKB
WES data is the exome capture region buffered by 100 bp on each side of each target,
with overlapping buffered regions merged. Users who are applying this protocol to a set
of gVCFs derived from sequencing across multiple capture designs will need to generate
a unified BED file for the regions of interest. The protocol here describes the BED
generation process for aggregating variants across multiple capture designs: the
intersection of all capture designs and the union of all capture designs.

3.1 Preparation of calling regions in BED format

3.1.1 Scenario 1: Adding 100 bp buffer on each side of the custom target regions in
BED format

3.1.1.1 Prerequisites:
a) BEDtools (https://bedtools.readthedocs.io/en/latest/)
b) Custom target regions in BED format (e.g. targets.bed)
c) FASTA index file (.fai) of the reference sequences (e.g. references.fa.fai)

3.1.1.2 Steps:
3.1.1.2.1 Generate 100 bp buffer regions of each side of the target regions

bedtools flank -i target.bed -g references.fa.fai -b 100 > buffer.bed

Command section Annotation
bedtools flank To create flanking intervals for each BED feature
-i target.bed The input BED file
-g references.fa.fai The genome file defining chromosome bounds
-b 100 The number of base pairs in each direction to add to the input BED file
> buffer.bed Redirect the output to the buffer.bed

3.1.1.2.2 Combine the target and buffer regions and sort based on chromosome

and start coordinates

cat target.bed buffer.bed | sort -k1,1 -k2,2n > target_buffer.bed

Command section Annotation
cat target.bed buffer.bed Concatenate the target and buffer BED files to the standard output
| sort -k1,1 -k2,2n Pipe to a sort command to sort the BED by chromosome first and then

by the start coordinates in the numeric order
> target_buffer.bed Redirect the output to a target_buffer.bed file

3.1.1.2.3 Merge overlapping regions

bedtools merge -i target_buffer.bed > calling_regions.bed

Command section Annotation
bedtools merge Merge overlapping BED features into a single interval
-i target_buffer.bed The input BED file
> calling_regions.bed Redirect the output to a calling_regions.bed file

3.1.2 Scenario 2: Merging to create the union of two different calling regions in BED

format

3.1.2.1 Prerequisites:
a) BEDtools (https://bedtools.readthedocs.io/en/latest/)
b) Two different calling regions in BED format (e.g. calling_regions_1.bed,

calling_regions_2.bed) Note: both BED files need to have coordinates of the
same genome build and the same chromosome naming convention as the
reference sequences.

3.1.2.2 Steps:

3.1.2.2.1 Combine the two calling regions and sort based on chromosome and start
coordinates

cat calling_regions_1.bed calling_regions_2.bed | sort -k1,1 -k2,2n > combined.bed

Command section Annotation
cat calling_regions_1.bed calling_regions_2.bed Concatenate the calling_regions_1 and calling_regions_2

BED files to the standard output
| sort -k1,1 -k2,2n Pipe to a sort command to sort the BED by chromosome first

and then by the start coordinates in the numeric order
> combined.bed Redirect the output to a combined.bed file

3.1.2.2.2 Merge overlapping regions

bedtools merge -i combined.bed > combined_calling_regions.bed

Command section Annotation
bedtools merge Merge overlapping BED features into a single interval
-i combined.bed The input BED file
> combined_calling_regions.bed Redirect the output to a combined_calling_regions.bed file

3.1.3 Scenario 3: Create the intersect of two different calling regions in BED format

3.1.3.1 Prerequisites:

c) BEDtools (https://bedtools.readthedocs.io/en/latest/)
d) Two different calling regions in BED format (e.g. calling_regions_1.bed,

calling_regions_2.bed) Note: both BED files need to have coordinates of the
same genome build and the same chromosome naming convention as the
reference sequences.

3.1.3.2 Steps:

3.1.3.2.1 Get the intersect of the two calling regions with BEDtools

bedtools intersect -a calling_regions_1.bed -b calling_regions_2.bed > intersect.bed

Command section Annotation
bedtools intersect Bedtools intersect
-a calling_regions_1.bed First calling regions in BED format
-b calling_regions_2.bed Section calling regions in BED format
> intersect.bed Redirect the output to a intersect.bed file

3.2 Running GLnexus workflow in DNAnexus platform to generate pVCF

3.2.1 Prerequisites:
a) Access to DNAnexus platform and the ‘GLnexus workflow’ in DNAnexus2
b) dx-toolkit (https://documentation.dnanexus.com/downloads) in local

environment
c) Access to a DNAnexus folder containing the single sample genomic VCF

(gVCF) for all samples to be included in pVCF.
d) A BED format file containing the genomic regions to be aggregated and

reported in the pVCF

3.2.2 Steps:
3.2.2.1 Generation of a manifest file containing the DNAnexus file ids of the gVCF

files.

dx find data --project=<dx_project_name> --folder=<folder_name> --name="*.gvcf.gz" --brief | cut -d\: -f2 >
<manifest_file>

Command section Annotation
dx find data Find data objects subject to the given search parameters
--project=<dx_project_name> The DNAnexus project name where the data is in
--folder=<folder_name> The folder where the data is in the DNAnexus project
--name="*.gvcf.gz" The files to look for using a wildcard “*”
--brief Print a DNAnexus ID per line for all matching gVCF files
| cut -d\: -f2 Pipe to the cut command to extract the DNAnexus file IDs only
> <manifest_file> Redirect the output to a file

3.2.2.2 Upload the <manifest_file> to the DNAnexus platform

dx upload --path <dx_project>:/<dx_folder>/ <manifest_file> --brief

Command section Annotation
dx upload Upload local file to DNAnexus
--path <dx_project>:/<dx_folder>/ The folder <dx_folder> in the DNAnexus project <dx_project> that

the manifest file is uploaded to
<manifest_file> The local manifest file that needs to be uploaded
--brief Return a DNAnexus file ID for the uploaded manifest file

2 https://github.com/dnanexus-rnd/GLnexus. The GLnexus workflow will shortly be available in the Research
Analysis Platform – please refer to the online community forum for more details.

3.2.2.3 Launch GLnexus workflow (version 1.3.1) to generate pVCF files

dx run GLnexus_joint_calling_workflow --priority high -y --brief -i common.gvcf_manifest=<manifest_file_location> -
i common.targets_bed=<calling_regions.bed> -i unify.shards_bed=<shards_bed> -i etl.shards=20 -i
common.config=DeepVariantWES -i common.output_name=<base_name> --folder=<output folder in DNAnexus>

Command section Annotation
dx run Run a workflow in DNAnexus
GLnexus_joint_calling_workflow The name of the workflow
--priority high Set the priority of the workflow run to ‘high’
-y Suppress prompt for confirmation
--brief Return a DNAnexus analysis ID for the launched workflow
-i
common.gvcf_manifest=<manifest_file_location>

Specify the location of the manifest file in DNAnexus. This can
be an absolution DNAnexus path like
<dx_project>:/<dx_folder>/<manifest_file> or a DNAnexus
file ID return in step 2

-i common.targets_bed=<calling_regions.bed> The calling regions in BED format
-i unify.shards_bed=<shards_bed> The desired shards in BED format
-i etl.shards=20 The number of shards in the ETL process
-i common.config=DeepVariantWES The built-in configurations a
-i common.output_name=<base_name> The base name of the output pVCF files
--folder=<output folder in DNAnexus> The output folder in DNAnexus

Note: a the available build-in configurations include DeepVariantWES, DeepVariantWGS, wecall, and gatk

4. Conversion of pVCF to PLINK and BGEN files

This section of the UKB WES protocol describes how UKB WES PLINK and BGEN format
files are derived from the pVCF, including the decomposition of multi-allelic variants into
biallelic variants and variant normalization prior to format conversion to PLINK and BGEN.
BGEN is recommended for running Regenie (https://doi.org/10.1038/s41588-021-00870-
7).

4.1 Prerequisites:
a) bcftools (http://www.htslib.org/download/)
b) PLINK 1.9
c) PLINK 2.0 (for BGEN conversion)
d) QCTOOL (https://www.well.ox.ac.uk/~gav/qctool_v2/)
e) Reference sequences in FASTA format (e.g. references.fa)

4.2 Steps:
4.2.1 Split multiallelic variants in pVCF file and variant normalization.

bcftools norm -f references.fa -m -any -Oz -o pvcf.norm.vcf.gz pvcf.vcf.gz

Command section Annotation
bcftools norm Split multiallelic variants and normalization
-f references.fa Specify the reference sequences (required for left-alignment and

normalization)
-m -any Split any multiallelic variants
-Oz The output type is ‘compressed VCF’
-o pvcf.norm.vcf.gz Write output to a file named ‘pvcf.norm.vcf.gz’
pvcf.vcf.gz The input pVCF file

4.2.2 Convert normalized biallelic pVCF to PLINK files.

plink --vcf pvcf.norm.vcf.gz --keep-allele-order --vcf-idspace-to _ --double-id --allow-extra-chr 0 --make-bed --vcf-
half-call m --out pvcf.norm

Command section Annotation
plink PLINK 1.9
--vcf pvcf.norm.vcf.gz Specify the input pVCF file
--keep-allele-order Keep the allele order
--vcf-idspace-to _ Change spaces in the variant IDs to underscore (_)
--double-id Set both family ID and within-family ID to the same sample ID
--allow-extra-chr 0 Specify the input pVCF file
--make-bed Set unrecognized chromosome codes to 0
--vcf-half-call m Convert half calls (./1) in the pVCF to missing in PLINK
--out pvcf.norm Specify the prefix of the output PLINK

4.2.3 Convert PLINK files to BGEN files and prepare BGEN files

4.2.3.1 Convert PLINK to zlib-compressed BGEN file

 plink2 --bfile pvcf.norm --export bgen-1.2 bits=8 ref-first --out pvcf.norm_zlib

Command section Annotation
plink2 PLINK2
--bfile pvcf.norm The input genotype file
--export bgen-1.2 bits=8 ref-first The output format bgen with 8-bits probability precision and correct

allele order
--out pvcf.norm_zlib The output genotype file

4.2.3.2 Convert zlib-compressed BGEN to zstd-compressed BGEN file using
QCTOOL

qctool -g pvcf.norm_zlib.bgen -s pvcf.norm_zlib.sample -og pvcf.norm.bgen -os pvcf.norm.sample -ofiletype bgen
-bgen-bits 8 -bgen-compression zstd -bgen-omit-sample-identifier-block

Command section Annotation
qctool QCTOOL v2
-g pvcf.norm_zlib.bgen The input genotype file
-s pvcf.norm_zlib.sample The input sample file
-og pvcf.norm.bgen The output genotype file
-os pvcf.norm.sample The output sample file
-ofiletype bgen The filetype of the output genotype file specified by -og
-bits 8 Store each probability in 8 bits
-bgen-compression zstd Use zstd algorithm for BGEN compression
-bgen-omit-sample-identifier-block Omit the sample identifier block

4.2.3.3 Generate BGEN index

bgenix -g pvcf.norm.bgen -index -clobber

Command section Annotation
bgenix bgenix
-g pvcf.norm.bgen Specify the input genotype file
-index Create an index file for the given bgen file
-clobber bgenix will overwrite existing index file if it exists

